Open Access
Issue
E3S Web Conf.
Volume 628, 2025
2025 7th International Conference on Environmental Prevention and Pollution Control Technologies (EPPCT 2025)
Article Number 01017
Number of page(s) 8
Section Research on the Characterization and Remediation Technologies of Environmental Pollutants
DOI https://doi.org/10.1051/e3sconf/202562801017
Published online 16 May 2025
  1. Wang, C., Song, G., Yang, Z. et al. Influence of Limestone Addition on Combustion and Emission Characteristics of Coal Slime in the 75 t/h CFB Boiler with Post-Combustion Chamber. J. Therm. Sci. 32, 1849–1857 (2023). https://doi.org/10.1007/s11630-023-1805-z [CrossRef] [Google Scholar]
  2. Albaladejo-Fuentes V, Sánchez-Adsuar M S, Anderson J A, et al. NOx storage on BaTi0.8Cu02O3 perovskite catalysts: Addressing a feasible mechanism. Nanomaterials, 2021, 11(8): 2133. https://doi.org/10.3390/nano11082133 [CrossRef] [PubMed] [Google Scholar]
  3. Wang X, Qiao L, Deng C, et al. Study on the characteristics of nitrogen dioxide adsorption and storage of coal residue in coal-fired power plants in goaf. Sci. Rep, 2021, 11(1): 8822. https://doi.org/10.1038/s41598-021-87855-y [CrossRef] [Google Scholar]
  4. Qi X, Song W, Song G. Influence of ashing temperature on predicting slagging characteristics of xinjiang high-sodium low-rank coal and strategy of using mineral additives as potential slagging preventatives. ACS Omega, 2021, 6(13): 8850–8861. https://doi.org/10.1021/acsomega.0c05906 [CrossRef] [PubMed] [Google Scholar]
  5. Zheng J., Wang J., Yang F L., et al. Influence and mechanism of the adsorption and reactions of residual NH3, NO, and O2 on coal ash after the selective noncatalytic reduction process. Fuel, 2023. https://doi.org/10.1016/j.fuel.2023.127826 [PubMed] [Google Scholar]
  6. Liu L, Yang W, Gu D, et al. In situ preparation of chitosan/ZIF-8 composite beads for highly efficient removal of U (VI). Front. Chem., 2019, 7: 607. https://doi.org/10.3389/fchem.2019.00607 [CrossRef] [Google Scholar]
  7. Lei L, Sang L, Zhang Y, et al. Interfacial analysis of anatase TiO2 in KOH solution by molecular dynamics simulations and photoelectrochemical experiments. ACS Omega, 2020, 5(7): 3522–3532. https://doi.org/10.1021/acsomega.9b03847 [CrossRef] [PubMed] [Google Scholar]
  8. Arun, J., Nachiappan, S., Rangarajan, G. et al. Synthesis and application of titanium dioxide photocatalysis for energy, decontamination and viral disinfection: a review. Environ Chem Lett 21, 339–362 (2023). https://doi.org/10.1007/s10311-022-01503-z [CrossRef] [PubMed] [Google Scholar]
  9. Jing, Y., Wang, J., Li, T. et al. Controllable synthesis of anatase titanium dioxide nanowires with high-temperature stability. J Mater Sci 57, 9164–9171 (2022). https://doi.org/10.1007/s10853-022-07231-7 [CrossRef] [Google Scholar]
  10. Villarreal-Morales R, Hinojosa-Reyes L, Zanella R, et al. Enhanced performance of TiO2 doped with aluminum for the photocatalytic degradation of a mixture of plasticizers. J Environ Chem Eng, 2021. https://doi.org/10.1016/jjece.2021.107100 [Google Scholar]
  11. Shuqin W, Yi Z, Peipei Z, et al. Study of the sulfation kinetics between SO2 and CaO catalyzed by TiO2 nano-particles. Chem Eng Res Des, 2011, 89(7): 1061–1066. https://doi.org/10.1016/j.cherd.2010.12.006 [CrossRef] [Google Scholar]
  12. Wang, SQ., Liu, MZ., Sun, LL. et al. Study on the mechanism of desulfurization and denitrification catalyzed by TiO2 in the combustion with biomass and coal. Korean J. Chem. Eng. 34, 1882–1888 (2017). https://doi.org/10.1007/s11814-017-0051-z [CrossRef] [Google Scholar]
  13. Pan H, Jian Y, Chen C, et al. Sphere-shaped Mn3O4 catalyst with remarkable low-temperature activity for methyl-ethyl-ketone combustion. Environ. Sci. Technol., 2017, 51(11): 6288–6297. https://doi.org/10.1021/acs.est.7b00136 [CrossRef] [PubMed] [Google Scholar]
  14. Reddy N L, Shankar M V, Sharma S C, et al. One-pot synthesis of Cu-TiO2/CuO nanocomposite: application to photocatalysis for enhanced H2 production, dye degradation & detoxification of Cr (VI). Int. J Hydrogen Energy, 2020, 45(13): 7813–7828. https://doi.org/10.1016/j.ijhydene.2019.10.081 [CrossRef] [Google Scholar]
  15. Kim W J, Lee S W, Sohn Y. Metallic Sn spheres and SnO2@ C core-shells by anaerobic and aerobic catalytic ethanol and CO oxidation reactions over SnO2 nanoparticles. Sci. Rep., 2015, 5(1): 13448. https://doi.org/10.1038/srep13448 [CrossRef] [Google Scholar]
  16. Ma H, He Y, Li X, et al. In situ loading of MoO3 clusters on ultrathin Bi2MoO6 nanosheets for synergistically enhanced photocatalytic NO abatement. Appl. Catal. B, 2021, 292: 120159. https://doi.org/10.1016/j.apcatb.2021.120159 [CrossRef] [Google Scholar]
  17. Wu Y, Liu C, Wang C, et al. Converting Copper Sulfide to Copper with Surface Sulfur for Electrocatalytic Alkyne Semi-hydrogenation with Water. Nat. Commun, 2021, 12(1):3881. https://doi.org/10.1038/s41467-021-24059-y [CrossRef] [Google Scholar]
  18. Mashentseva A A, Barsbay M, Zdorovets M V, et al. Cu/CuO Composite Track-Etched Membranes for Catalytic Decomposition of Nitrophenols and Removal of As(III). Nanomaterials, 2020, 10(8):1552. https://doi.org/10.3390/nano10081552. [CrossRef] [PubMed] [Google Scholar]
  19. De A K, Sinha I. Synergistic effect of Ni doping and oxygen vacancies on the visible light photocatalytic properties of Ag2O nanoparticles. J. Phys. Chem. Solids, 2022, 167:110733-. https://doi.org/10.1016/j.jpcs.2022.110733. [CrossRef] [Google Scholar]
  20. Siddik A, Satheesh S. Characterization and assessment of barnacle larval settlement-inducing activity of extracellular polymeric substances isolated from marine biofilm bacteria. Sci. Rep., 2019, 9(1): 17849. https://doi.org/10.1038/s41598-019-54294-9 [CrossRef] [Google Scholar]
  21. Zhao S, Zhang S, Zhang W, et al. First demonstration of protective effects of purified mushroom polysaccharide-peptides against fatty liver injury and the mechanisms involved. Sci. Rep., 2019, 9(1): 13725. https://doi.org/10.1038/s41598-019-49925-0 [CrossRef] [Google Scholar]
  22. Wang S Q, Liu M Z, Sun L L, et al. Study on the mechanism of desulfurization and denitrification catalyzed by TiO2 in the combustion with biomass and coal. Korean J Chem Eng, 2017, 34:1882–1888. https://doi.org/10.1007/s11814-017-0051-z [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.