Open Access
Issue
E3S Web Conf.
Volume 629, 2025
2025 15th International Conference on Future Environment and Energy (ICFEE 2025)
Article Number 06007
Number of page(s) 7
Section Smart Algorithms for Renewable Energy Integration and Grid Resilience
DOI https://doi.org/10.1051/e3sconf/202562906007
Published online 05 June 2025
  1. G. Muniraju, S. Rao, S. Katoch, A. Spanias, C. Tepedelenlioglu, P. Turaga, M.K. Banavar and D. Srinivasan. “A Cyber-Physical Photovoltaic Array Monitoring and Control System”, Cognitive Analytics, (2020). [Google Scholar]
  2. M. R. Ahan, A. Nambi, T. Ganu, D. Nahata and S. Kalyanaraman; “AI-assisted CellLevel Fault Detection and Localization in Solar PV Electroluminescence Images”, Proceedings of the 19th ACM Conference on Embedded, (2021). [Google Scholar]
  3. YOLO11, https://docs.ultralytics.com/models/yolo11/. (2024) [Google Scholar]
  4. N. Ravi, V. Gabeur, Y. g Hu, R. Hu, C. Ryali, T. Ma, H., R. Rädle, C. Rolland, L. Gustafson, E. Mintun, J. Pan, K.V. Alwala, N. Carion, C. Wu, R. Girshick and P. Dollár, C. Feichtenhofer. “SAM 2: Segment Anything in Images and Videos”, https://ai.meta.com/sam2, (2024) [Google Scholar]
  5. A. Abubakar, C. Almeida and M. Gemignani; “Review of Artificial Intelligence-Based Failure Detection and Diagnosis Methods for Solar Photovoltaic Systems”, Machines, (2021). [Google Scholar]
  6. L. P. Osco, Q. Wu, E.L. de Lemos, W.N. Gonçalves, A.P.M. Ramos, J. Li, and J.M. Junior. The Segment Anything Model (SAM) for remote sensing applications: From zero to one shot”, International Journal of Applied Earth Observation and Geoinformation, 124, 103540, (2023). [CrossRef] [Google Scholar]
  7. Z. Dong, Z. Zhelei, Z. Yian and D. Junhua. “Overview of predictive maintenance based on digital twin technology”, Heliyon, 9, 4, (2023) [Google Scholar]
  8. A. Greco, C. Pironti, A. Saggese, M. Vento and V. Vigilante; “A Deep Learning Based Approach for Detecting Panels in Photovoltaic Plants”, Proceeding of the 3rd International Conference on Applications of Intelligent Systems, (2020). [Google Scholar]
  9. L. Chen, Z. Chen and Y. Zhang. “Artificial intelligence-based solutions for climate change: a review”, Environmental Chemistry Letters 21, 2525–2557, (2023). [CrossRef] [Google Scholar]
  10. Y. Cao, D. Pang, Q. Zhao, Y. Yan, Y. Jiang, C. Tian, F. Wang and J. Li. “Improved YOLOv8-GD deep learning model for defect detection in electroluminescence images of solar photovoltaic modules”, Engineering Applications of Artificial Intelligence, 131, (2024) [Google Scholar]
  11. S. Jumaboev, D. Jurakuziev and M. Lee; “Photovoltaics Plant Fault Detection Using Deep Learning Techniques”, Remote Sensing, 14, 15 (2022). [Google Scholar]
  12. K. Liao and J. Lu; “Using UAV to Detect Solar Module Fault Conditions of A Solar Power Farm with IR and Visual Image Analysis”, Applied Sciences, 11, 4 (2021) [Google Scholar]
  13. V. Mohan and S. Selvaraj; “IoT Based Fault Identification in Solar Photovoltaic Systems Using An Extreme Learning Machine Technique”, Journal of Intelligent & Fuzzy Systems, 3, (2022). [Google Scholar]
  14. X. Yang, K. Jia, and Z. Peng. “Construction of integrated network order system of main distribution network based on power grid operation control platform”, Energy Inform, 7, 70, (2024). [CrossRef] [Google Scholar]
  15. W. Yuxin, G. Jiangyang, Q. Yifeng, L. Xiaowei, H. Jiangning, Z. Jialiang, Z. Zhi, L. Jianguo and Y. Xiaoju, “Research Progress on Deep Learning Based Defect Detection Technology for Solar Panels”, EAI Endorsed Transactions on Energy Web, 11, (2024) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.