Open Access
Issue |
E3S Web Conf.
Volume 629, 2025
2025 15th International Conference on Future Environment and Energy (ICFEE 2025)
|
|
---|---|---|
Article Number | 06006 | |
Number of page(s) | 10 | |
Section | Smart Algorithms for Renewable Energy Integration and Grid Resilience | |
DOI | https://doi.org/10.1051/e3sconf/202562906006 | |
Published online | 05 June 2025 |
- International Energy Agency, “CO2 Emissions in 2023,” Paris, Francia, Feb. 2024. Accessed: Apr. 25, 2024. [Online]. Available: https://www.iea.org/reports/co2-emissions-in-2023 [Google Scholar]
- Jorge Cárcamo, Ángela Díaz, Lesvi Montoya, and Tannia Vindel, “Balance energetico 2022,” Secretaría de Estado en el Despacho de Energía, Tegucigalpa, Sep. 2023. Accessed: Apr. 22, 2024. [Online]. Available: https://sen.hn/wpcontent/uploads/2023/12/Balance-energetico-2022.pdf [Google Scholar]
- Q. Li, S. Krapf, Y. Shi, and X. X. Zhu, “SolarNet: A convolutional neural networkbased framework for rooftop solar potential estimation from aerial imagery,” Int. J. Appl. Earth Obs. Geoinformation, vol. 116, p. 103098, Feb. 2023, doi: 10.1016/j.jag.2022.103098. [CrossRef] [Google Scholar]
- S. Lee, S. Iyengar, M. Feng, P. Shenoy, and S. Maji, “DeepRoof: A Data-driven Approach For Solar Potential Estimation Using Rooftop Imagery,” in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, in KDD ’19. New York, NY, USA: Association for Computing Machinery, Jul. 2019, pp. 2105–2113. doi: 10.1145/3292500.3330741. [Google Scholar]
- H. Nasrallah, A. E. Samhat, Y. Shi, X. X. Zhu, G. Faour, and A. J. Ghandour, “Lebanon Solar Rooftop Potential Assessment Using Buildings Segmentation From Aerial Images,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 15, pp. 4909–4918, 2022, doi: 10.1109/JSTARS.2022.3181446. [CrossRef] [Google Scholar]
- C. Zhang, Z. Li, H. Jiang, Y. Luo, and S. Xu, “Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China,” Appl. Energy, vol. 283, p. 116329, Feb. 2021, doi: 10.1016/j.apenergy.2020.116329. [CrossRef] [Google Scholar]
- T. Zhong et al., “A city-scale estimation of rooftop solar photovoltaic potential based on deep learning,” Appl. Energy, vol. 298, p. 117132, Sep. 2021, doi: 10.1016/j.apenergy.2021.117132. [CrossRef] [Google Scholar]
- M. Amo-Boateng, N. Ekow Nkwa Sey, A. Ampah Amproche, and M. Kyereh Domfeh, “Instance segmentation scheme for roofs in rural areas based on Mask RCNN,” Egypt. J. Remote Sens. Space Sci., vol. 25, no. 2, pp. 569–577, Aug. 2022, doi: 10.1016/j.ejrs.2022.03.017. [Google Scholar]
- Y. Xin et al., “Machine Learning and Deep Learning Methods for Cybersecurity,” IEEE Access, vol. 6, pp. 35365–35381, 2018, doi: 10.1109/ACCESS.2018.2836950. [CrossRef] [Google Scholar]
- G. W. Lindsay, “Convolutional Neural Networks as a Model of the Visual System: Past, Present, and Future,” J. Cogn. Neurosci., vol. 33, no. 10, pp. 2017–2031, Sep. 2021, doi: 10.1162/jocn_a_01544. [CrossRef] [PubMed] [Google Scholar]
- Youhui Tian, “Artificial Intelligence Image Recognition Method Based on Convolutional Neural Network Algorithm,” IEEE Access, vol. 8, pp. 125731–125744, Jun. 2020, doi: 10.1109/ACCESS.2020.3006097. [CrossRef] [Google Scholar]
- H. Dalianis, “Evaluation Metrics and Evaluation,” in Clinical Text Mining: Secondary Use of Electronic Patient Records, H. Dalianis, Ed., Cham: Springer International Publishing, 2018, pp. 45–53. doi: 10.1007/978-3-319-78503-5_6. [CrossRef] [Google Scholar]
- E. Fakhraian, M. A. Forment, F. V. Dalmau, A. Nameni, and M. J. C. Guerrero, “Determination of the urban rooftop photovoltaic potential: A state of the art,” Energy Rep., vol. 7, pp. 176–185, Sep. 2021, doi: 10.1016/j.egyr.2021.06.031. [CrossRef] [Google Scholar]
- B. W. Boehm, “A spiral model of software development and enhancement,” Computer, vol. 21, no. 5, pp. 61–72, May 1988, doi: 10.1109/2.59. [CrossRef] [Google Scholar]
- L. V. Cárdenas and H. V. Flores, “Estimation of the Photovoltaic Potential on Rooftops in the City of San Pedro Sula, Cortés, Honduras,” E3S Web Conf., vol. 379, p. 03001, 2023, doi: 10.1051/e3sconf/202337903001. [CrossRef] [EDP Sciences] [Google Scholar]
- D. L. Talavera, F. J. Muñoz-Rodriguez, G. Jimenez-Castillo, and C. Rus-Casas, “A new approach to sizing the photovoltaic generator in self-consumption systems based on cost–competitiveness, maximizing direct self-consumption,” Renew. Energy, vol. 130, pp. 1021–1035, 2019, doi: https://doi.org/10.1016/j.renene.2018.06.088. [CrossRef] [Google Scholar]
- Junta Ejecutiva del Mecanismo de Desarrollo Limpio, “Standardized baseline: Honduran Grid Emission Factor,” Naciones Unidas, 2019. Accessed: Jun. 01, 2024. [Online]. Available: https://cdm.unfccc.int/methodologies/standard_base/2015/sb136.html [Google Scholar]
- Universidad Nacional Autónoma de Honduras, “Perfil Sociodemográfico de San Pedro Sula, Cortes 2022,” IIES-UNAH, Tegucigalpa, 2022. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.