Open Access
Issue |
E3S Web Conf.
Volume 631, 2025
6th International Conference on Multidisciplinary Design Optimization and Applications (MDOA 2024)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 8 | |
Section | Prediction and Optimization for Advance Proceeding and Health Monitoring | |
DOI | https://doi.org/10.1051/e3sconf/202563101001 | |
Published online | 26 May 2025 |
- Chen D, Huang B, Kang F. A Review of Detection Technologies for Underwater Cracks on Concrete Dam Surfaces. APPL SCI-BASEL. 2023; 13. [Google Scholar]
- Zakeri H, Moghadas Nejad F, Fahimifar A. Image Based Techniques for Crack Detection, Classification and Quantification in Asphalt Pavement: A Review. ARCH COMPUT METHOD E. 2017; 24: 935-77. [CrossRef] [Google Scholar]
- Luo WM, Sun JH, Liao Y, Zhang ZY. Research on the Real-Time Detection Method for Image Processing - Based Civil Structure Crack. TRAIT SIGNAL. 2022; 39: 2223-28. [CrossRef] [Google Scholar]
- Cao WM, Liu QF, He ZQ. Review of Pavement Defect Detection Methods. IEEE ACCESS. 2020; 8: 14531-44. [CrossRef] [Google Scholar]
- Hu GX, Hu BL, Yang Z, Huang L, Li P. Pavement Crack Detection Method Based on Deep Learning Models. WIREL COMMUN MOB COM. 2021; 2021. [Google Scholar]
- Kim BC, Son BJ. Crack Detection of Concrete Images Using Dilatation and Crack Detection Algorithms. APPL SCI-BASEL. 2023; 13. [Google Scholar]
- Luo J, Lin HZ, Wei XX, Wang YS. Adaptive Canny and Semantic Segmentation Networks Based on Feature Fusion for Road Crack Detection. IEEE ACCESS. 2023; 11: 51740-53. [CrossRef] [Google Scholar]
- Shi Y, Cui LM, Qi ZQ, Meng F, Chen ZS. Automatic Road Crack Detection Using Random Structured Forests. IEEE T INTELL TRANSP. 2016; 17: 3434-45. [CrossRef] [Google Scholar]
- Fan LL, Li S, Li Y, Li B, Cao DP, Wang FY. Pavement Cracks Coupled With Shadows: A New Shadow-Crack Dataset and A Shadow-Removal-Oriented Crack Detection Approach. IEEE-CAA J AUTOMATIC. 2023; 10: 1593-607. [CrossRef] [Google Scholar]
- Lee D, Kim J, Lee D. Robust Concrete Crack Detection Using Deep Learning-Based Semantic Segmentation. INT J AERONAUT SPACE. 2019; 20: 287-99. [CrossRef] [Google Scholar]
- Ma KF, Hao MS, Meng X, Liu JP, Meng JZ, Xuan YB. Coarse-Fine Combined Bridge Crack Detection Based on Deep Learning. APPL SCI-BASEL. 2024; 14. [Google Scholar]
- Guo F, Qian Y, Liu J, Yu HY. Pavement crack detection based on transformer network. AUTOMAT CONSTR. 2023; 145. [Google Scholar]
- Xiang XZ, Zhang YQ, El Saddik A. Pavement crack detection network based on pyramid structure and attention mechanism. IET IMAGE PROCESS. 2020; 14: 1580-86. [CrossRef] [Google Scholar]
- Yu JT, Qian SR, Chen C. Lightweight Crack Automatic Detection Algorithm Based on TF-MobileNet. APPL SCIBASEL. 2024; 14. [Google Scholar]
- Zhang J, Qian SR, Tan C. Automated bridge crack detection method based on lightweight vision models. COMPLEX INTELL SYST. 2023; 9: 1639-52. [CrossRef] [Google Scholar]
- Jin T, Ye X, Li Z. Establishment and evaluation of conditional GAN-based image dataset for semantic segmentation of structural cracks. ENG STRUCT. 2023; 285. [Google Scholar]
- Song QS, Liu LM, Lu N, Zhang Y, Muniyandi RC, An YS. A three-stage pavement image crack detection framework with positive sample augmentation. ENG APPL ARTIF INTEL. 2024; 129. [Google Scholar]
- Zhang C, Chen Y, Tang LL, Chu X, Li CK. CTCD-Net: A Cross-Layer Transmission Network for Tiny Road Crack Detection. REMOTE SENS-BASEL. 2023; 15. [Google Scholar]
- Yuan B, Sun ZY, Pei LL, Li W, Zhao KY. Shuffle Attention-Based Pavement-Sealed Crack Distress Detection. SENSORS-BASEL. 2024; 24. [Google Scholar]
- Peng C, Yang MQ, Zheng QH, Zhang J, Wang DQ, Yan RY, et al. A triple-thresholds pavement crack detection method leveraging random structured forest. CONSTR BUILD MATER. 2020; 263. [Google Scholar]
- Qu Z, Wang LL. Gating attention convolutional networks with dense connection for pixel-level crack detection. MULTIMEDIA SYST. 2023; 29: 641-52. [CrossRef] [Google Scholar]
- Zhang Y, Zhang XM, Su Y, Li X, Ma SW, Zhang S, et al. Tunnel Lining Crack Detection Method Based on Polarization 3D Imaging. PHOTONICS-BASEL. 2023; 10. [Google Scholar]
- Liang HR, Qiu DW, Ding KL, Zhang YL, Wang YZ, Wang XY, et al. Automatic Pavement Crack Detection in Multisource Fusion Images Using Similarity and Difference Features. IEEE SENS J. 2024; 24: 5449-65. [CrossRef] [Google Scholar]
- Wu J, He YJ, Xu CY, Jia XP, Huang YL, Chen QR, et al. Interpretability Analysis of Convolutional Neural Networks for Crack Detection. BUILDINGS-BASEL. 2023; 13. [Google Scholar]
- Ali L, Alnajjar F, Khan W, Serhani MA, Al Jassmi H. Bibliometric Analysis and Review of Deep Learning-Based Crack Detection Literature Published between 2010 and 2022. BUILDINGS-BASEL. 2022; 12. [Google Scholar]
- Greenhall J, Grutzik S, Graham A, Sinha DN, Pantea C. Nonlinear acoustic crack detection in thermoelectric wafers. MECH SYST SIGNAL PR. 2020; 139. [Google Scholar]
- Cui SL, Sun XG, Luan MS, Wei YX. Research on crack detection method of ballastless track slab based on infrared thermometer. INFRARED PHYS TECHN. 2021; 116. [Google Scholar]
- Avendaño JC, Leander J, Karoumi R. Image-Based Concrete Crack Detection Method Using the Median Absolute Deviation. SENSORS-BASEL. 2024; 24. [Google Scholar]
- Li ZB, Yin C, Zhang XX. Crack Segmentation Extraction and Parameter Calculation of Asphalt Pavement Based on Image Processing. SENSORS-BASEL. 2023; 23. [Google Scholar]
- Xu N, He LZ, Li Q. Crack-Att Net: crack detection based on improved U-Net with parallel attention. MULTIMED TOOLS APPL. 2023; 82: 42465-84. [CrossRef] [Google Scholar]
- Yang QN, Ji XD. Automatic Pixel-Level Crack Detection for Civil Infrastructure Using Unet plus plus and Deep Transfer Learning. IEEE SENS J. 2021; 21: 19165-75. [CrossRef] [Google Scholar]
- Liu JW, Yang X, Lau S, Wang X, Luo S, Lee V, et al. Automated pavement crack detection and segmentation based on two-step convolutional neural network. COMPUT-AIDED CIV INF. 2020; 35: 1291-305. [CrossRef] [Google Scholar]
- Ren JH, Zhao GW, Ma YD, Zhao D, Liu T, Yan J. Automatic Pavement Crack Detection Fusing Attention Mechanism. ELECTRONICS-SWITZ. 2022; 11. [Google Scholar]
- Ma D, Fang HY, Wang N, Xue BH, Dong JX, Wang F. A real-time crack detection algorithm for pavement based on CNN with multiple feature layers. ROAD MATER PAVEMENT. 2022; 23: 2115-31. [CrossRef] [Google Scholar]
- Qiao WT, Liu QW, Wu XG, Ma B, Li G. Automatic Pixel-Level Pavement Crack Recognition Using a Deep Feature Aggregation Segmentation Network with a scSE Attention Mechanism Module. SENSORS-BASEL. 2021; 21. [Google Scholar]
- Huang B, Kang F, Li XY, Zhu SS. Underwater dam crack image generation based on unsupervised image-toimage translation. AUTOMAT CONSTR. 2024; 163. [Google Scholar]
- Zhao M, Xu XY, Bao XH, Chen XS, Yang H. An Automated Instance Segmentation Method for Crack Detection Integrated with CrackMover Data Augmentation. SENSORS-BASEL. 2024; 24. [Google Scholar]
- Chen LZ, He JY, Wu YY, Tang YD, Ge GH, Wang WL. Detection and 3-D Visualization of Human Tooth Surface Cracks Using Line Structured Light. IEEE SENS J. 2024; 24: 13958-67. [CrossRef] [Google Scholar]
- Trung LQ, Kasai N, Le M, Sekino K. Crack detection in low carbon steel using Rotating Uniform Eddy Current probe and noise signal filtering based on Multivariate Singular Spectrum Analysis. SENSOR ACTUAT A-PHYS. 2023; 362. [Google Scholar]
- Lang H, Lu JJ, Lou YX, Chen SD. Pavement Cracking Detection and Classification Based on 3D Image Using Multiscale Clustering Model. J COMPUT CIVIL ENG. 2020; 34. [CrossRef] [Google Scholar]
- Feng CC, Zhang H, Wang HR, Wang S, Li YL. Automatic Pixel-Level Crack Detection on Dam Surface Using Deep Convolutional Network. SENSORS-BASEL. 2020; 20. [Google Scholar]
- Xu GY, Han X, Zhang YW, Wu CY. Dam Crack Image Detection Model on Feature Enhancement and Attention Mechanism. WATER-SUI. 2023; 15. [Google Scholar]
- Li C, Xu PJ, Niu L, Chen Y, Sheng LS, Liu MC. Tunnel crack detection using coarse-to-fine region localization and edge detection. WIRES DATA MIN KNOWL. 2019; 9. [Google Scholar]
- Gao XW, Li SQ, Jin BY, Hu M, Ding W. Intelligent crack damage detection system in shield tunnel using combination of retinanet and optimal adaptive selection. J INTELL FUZZY SYST. 2021; 40: 4453-69. [Google Scholar]
- Hu B, Liu Y, Yu RQ. Magnetic anomaly characteristics of surface crack defects in a titanium alloy plate. NONDESTRUCT TEST EVA. 2021; 36: 209-24. [CrossRef] [Google Scholar]
- Lin Y, Xu ZZ, Chen D, Ai ZJ, Qiu Y, Yuan YZ. Wood Crack Detection Based on Data-Driven Semantic Segmentation Network. IEEE-CAA J AUTOMATIC. 2023; 10: 1510-12. [CrossRef] [Google Scholar]
- Yu DW, Ji SP, Li X, Yuan ZD, Shen CY. Earthquake Crack Detection From Aerial Images Using a Deformable Convolutional Neural Network. IEEE T GEOSCI REMOTE. 2022; 60. [Google Scholar]
- Chen D, Huang B, Kang F. A Review of Detection Technologies for Underwater Cracks on Concrete Dam Surfaces. APPL SCI-BASEL. 2023; 13. [Google Scholar]
- Yu G, Zhou XL. An Improved YOLOv5 Crack Detection Method Combined with a Bottleneck Transformer. MATHEMATICS-BASEL. 2023; 11. [Google Scholar]
- Sun MS, Zhao HW, Li J. Road crack detection network under noise based on feature pyramid structure with feature enhancement (road crack detection under noise). IET IMAGE PROCESS. 2022; 16: 809-22. [CrossRef] [Google Scholar]
- Zhou SX, Pan Y, Guan JY, Wang Q. Multi-band Feature Images Concrete Crack Segmentation Framework Using Deep Learning. KSCE J CIV ENG. 2024; 28: 3902-12. [CrossRef] [Google Scholar]
- Jiang WB, Liu M, Peng YN, Wu LH, Wang YN. HDCB-Net: A Neural Network With the Hybrid Dilated Convolution for Pixel-Level Crack Detection on Concrete Bridges. IEEE T IND INFORM. 2021; 17: 5485-94. [CrossRef] [Google Scholar]
- He ZC, Wei BL, Zhou LF, Zhou EL, Li E, Xing ZY. The crack detection of acoustic metamaterials using a weighted mode shape-wavelet-based strategy. ENG ANAL BOUND ELEM. 2022; 145: 286-98. [CrossRef] [Google Scholar]
- Li YX, Ma JM, Zhao ZY, Shi G. A Novel Approach for UAV Image Crack Detection. SENSORS-BASEL. 2022; 22. [Google Scholar]
- Zhou SL, Song W. Robust Image-Based Surface Crack Detection Using Range Data. J COMPUT CIVIL ENG. 2020; 34. [Google Scholar]
- Cui DS, Zhang CW. Crack Detection of Curved Surface Structure Based on Multi-Image Stitching Method. BUILDINGS-BASEL. 2024; 14. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.