Open Access
Issue
E3S Web Conf.
Volume 631, 2025
6th International Conference on Multidisciplinary Design Optimization and Applications (MDOA 2024)
Article Number 01007
Number of page(s) 11
Section Prediction and Optimization for Advance Proceeding and Health Monitoring
DOI https://doi.org/10.1051/e3sconf/202563101007
Published online 26 May 2025
  1. Ramazani H, Kami A (2022) Metal FDM, a new extrusion-based additive manufacturing technology for manufacturing of metallic parts: a review. Prog Addit Manuf 7:609–626. https://doi.org/10.1007/s40964-021-00250-x [Google Scholar]
  2. W. Sinthavathavorn, M. Nithitanakul, B. P. Grady, and R. Magaraphan, “Melt rheology and die swell of PA6/LDPE blends by using lithium ionomer as a compatibilizer,” Polym. Bull., vol. 63, no. 1, pp. 23–35, Jul. 2009, doi: 10.1007/s00289-009-0063-x. [CrossRef] [Google Scholar]
  3. J. Z. Liang, J. Yang, and C. Y. Tang, “Die-swell behavior of PP/Al(OH)3/Mg(OH)2 flame retardant composite melts,” Polym. Test., vol. 29, no. 5, pp. 624–628, 2010, doi: 10.1016/j.polymertesting.2010.03.014. [CrossRef] [Google Scholar]
  4. J. S. Anand and I. S. Bhardwaj, “Die swell behaviour of polypropylene - An experimental investigation,” Rheol. Acta, vol. 19, no. 5, pp. 614–622, Sep. 1980, doi: 10.1007/BF01517515. [CrossRef] [Google Scholar]
  5. E. Behzadfar, M. Ansari, V. K. Konaganti, and S. G. Hatzikiriakos, “Extrudate swell of HDPE melts: I. Experimental,” J. Nonnewton. Fluid Mech., vol. 225, pp. 86–93, Nov. 2015, doi: 10.1016/j.jnnfm.2015.07.008. [CrossRef] [Google Scholar]
  6. L. A. Utracki, Z. Bakerdjian, and M. R. Kamal, “A method for the measurement of the true die swell of polymer melts,” J. Appl. Polym. Sci., vol. 19, no. 2, pp. 481–501, Feb. 1975, doi: 10.1002/app.1975.070190213. [CrossRef] [Google Scholar]
  7. A. Dutta and M. E. Ryan, “A study of parison development in extrusion blow molding,” J. Nonnewton. Fluid Mech., vol. 10, no. 3–4, pp. 235–256, Jan. 1982, doi: 10.1016/0377-0257(82)80003-7. [CrossRef] [Google Scholar]
  8. D. Kalyon, V. Tan, and M. R. Kamal, “The dynamics of parison development in blow molding,” Polym. Eng. Sci., vol. 20, no. 12, pp. 773–777, Aug. 1980, doi: 10.1002/pen.760201202. [CrossRef] [Google Scholar]
  9. Y. Béreaux, J.-Y. Charmeau, and J. Balcaen, “Optical measurement and modelling of parison sag and swell in blow moulding,” Int. J. Mater. Form., vol. 5, no. 3, pp. 199–211, Sep. 2012, doi: 10.1007/s12289-011-1040-0. [CrossRef] [Google Scholar]
  10. D. Tang, F. H. Marchesini, D. R. D’hooge, and L. Cardon, “Isothermal flow of neat polypropylene through a slit die and its die swell: Bridging experiments and 3D numerical simulations,” J. Nonnewton. Fluid Mech., vol. 266, no. December 2018, pp. 33–45, 2019, doi: 10.1016/j.jnnfm.2019.02.004. [CrossRef] [Google Scholar]
  11. R. I. Tanner, “A theory of die-swell,” J. Polym. Sci. Part A-2 Polym. Phys., vol. 8, no. 12, pp. 2067–2078, Dec. 1970, doi: 10.1002/pol.1970.160081203. [CrossRef] [Google Scholar]
  12. D. Tang, F. H. Marchesini, L. Cardon, and D. R. D’hooge, “Three-dimensional flow simulations for polymer extrudate swell out of slit dies from low to high aspect ratios,” Phys. Fluids, vol. 31, no. 9, p. 093103, Sep. 2019, doi: 10.1063/1.5116850. [CrossRef] [Google Scholar]
  13. V. K. Konaganti, M. Ansari, E. Mitsoulis, and S. G. Hatzikiriakos, “Extrudate swell of a high-density polyethylene melt: II. Modeling using integral and differential constitutive equations,” J. Nonnewton. Fluid Mech., vol. 225, pp. 94–105, Nov. 2015, doi: 10.1016/j.jnnfm.2015.07.005. [CrossRef] [Google Scholar]
  14. R. V. Morgan, R. S. Reid, A. M. Baker, and D. Bernardin, John, “Emissivity Measurements of Additively Manufactured Materials,” Los Alamos Natl. Lab. (LANL), Los Alamos, NM (United States), no. LA-UR-17-20513, 2017. [Google Scholar]
  15. B. Wijnen, P. Sanders, and J. M. Pearce, “Improved model and experimental validation of deformation in fused filament fabrication of polylactic acid,” Prog. Addit. Manuf., vol. 3, no. 4, pp. 193–203, Dec. 2018, doi: 10.1007/s40964-018-0052-4. [CrossRef] [Google Scholar]
  16. M. Hyvärinen, R. Jabeen, and T. Kärki, “The Modelling of Extrusion Processes for Polymers—A Review,” Polymers, vol. 12, no. 6, p. 1306, Jun. 2020, doi: 10.3390/polym12061306. [CrossRef] [Google Scholar]
  17. D. A. Anderegg et al., “In-situ monitoring of polymer flow temperature and pressure in extrusion based additive manufacturing,” Addit. Manuf., vol. 26, no. January, pp. 76–83, 2019, doi: 10.1016/j.addma.2019.01.002. [Google Scholar]
  18. M. P. Serdeczny, R. Comminal, D. B. Pedersen, and J. Spangenberg, “Experimental and analytical study of the polymer melt flow through the hot-end in material extrusion additive manufacturing,” Addit. Manuf., vol. 32, no. October 2019, p. 100997, Mar. 2020, doi: 10.1016/j.addma.2019.100997. [Google Scholar]
  19. A. Dervieux and F. Thomasset, “A finite element method for the simulation of a Rayleigh-Taylor instability,” in Approximation Methods for Navier-Stokes Problems, Berlin, Heidelberg: Springer, 1980, pp. 145–158. [CrossRef] [Google Scholar]
  20. S. Osher, R. Fedkiw, and K. Piechor, “Level Set Methods and Dynamic Implicit Surfaces,” Appl. Mech. Rev., vol. 57, no. 3, pp. B15–B15, May 2004, doi: 10.1115/1.1760520. [Google Scholar]
  21. J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, 1999. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.