Open Access
Issue |
E3S Web Conf.
Volume 631, 2025
6th International Conference on Multidisciplinary Design Optimization and Applications (MDOA 2024)
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 5 | |
Section | Prediction and Optimization for Advance Proceeding and Health Monitoring | |
DOI | https://doi.org/10.1051/e3sconf/202563101008 | |
Published online | 26 May 2025 |
- Gupta, R., Mitchell, D., Blanche, J., Harper, S., Tang, W., Pancholi, K., ... & Flynn, D. (2021). A review of sensing technologies for non-destructive evaluation of structural composite materials. Journal of Composites Science, 5(12), 319. [CrossRef] [Google Scholar]
- Hu, K., Chen, Z., Kang, H., & Tang, Y. (2024). 3D vision technologies for a self-developed structural external crack damage recognition robot. Automation in Construction, 159, 105262. [CrossRef] [Google Scholar]
- Yao, Y., Tung, S. T. E., & Glisic, B. (2014). Crack detection and characterization techniques—An overview. Structural Control and Health Monitoring, 21(12), 1387-1413. [CrossRef] [Google Scholar]
- Hassani, S., Mousavi, M., & Gandomi, A. H. (2021). Structural health monitoring in composite structures: A comprehensive review. Sensors, 22(1), 153. [CrossRef] [PubMed] [Google Scholar]
- do Cabo, C. T., Valente, N. A., & Mao, Z. (2022). A Comparative Analysis of Imaging Processing Techniques for Non-Invasive Structural Health Monitoring. IFAC-PapersOnLine, 55(27), 150-154. [CrossRef] [Google Scholar]
- Guo, P., Meng, X., Meng, W., & Bao, Y. (2022). Monitoring and automatic characterization of cracks in strain-hardening cementitious composite (SHCC) through intelligent interpretation of photos. Composites Part B: Engineering, 242, 110096. [CrossRef] [Google Scholar]
- Saadatmorad, M., Jafari-Talookolaei, R. A., Pashaei, M. H., & Khatir, S. (2022). Damage detection in rectangular laminated composite plate structures using a combination of wavelet transforms and artificial neural networks. Journal of Vibration Engineering & Technologies, 10(5), 1647-1664. [CrossRef] [Google Scholar]
- Jaanuska, L., & Hein, H. (2022). Delamination quantification by Haar wavelets and machine learning. Mechanics of Composite Materials, 58(2), 249-260. [CrossRef] [Google Scholar]
- Hein, H., & Jaanuska, L. (2019). Comparison of machine learning methods for crack localization. Acta Et Commentationes Universitatis Tartuensis De Mathematica, 23(1), 125-142. [CrossRef] [Google Scholar]
- Hein, H., & Jaanuska, L. (2022). Quantification of cracks in beams on the Pasternak foundation using Haar wavelets and machine learning. Proceedings of the Estonian Academy of Sciences, 71(1), 16-29. [CrossRef] [Google Scholar]
- Yam, L. H., Yan, Y. J., & Jiang, J. S. (2003). Vibration-based damage detection for composite structures using wavelet transform and neural network identification. Composite Structures, 60(4), 403-412. [CrossRef] [Google Scholar]
- Padsumbiya, M., Brahmbhatt, V., & Thakkar, S. P. (2022). Automatic crack detection using convolutional neural network. Journal of Soft Computing in Civil Engineering, 6(3), 1-17. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.