Open Access
Issue
E3S Web Conf.
Volume 632, 2025
The 5th Edition of Oriental Days for the Environment “Green Lab. Solution for Sustainable Development” (JOE5)
Article Number 04001
Number of page(s) 12
Section Renewable Energies & Circular Economy
DOI https://doi.org/10.1051/e3sconf/202563204001
Published online 03 June 2025
  1. M. Akbari-Moghanjoughi, Generalized sheath criterion for arbitrary degenerate plasmas. Phys. Plasmas. 24, 012113 (2017). [CrossRef] [Google Scholar]
  2. C. Zhang, L. Qi, Q. Chen, L. Lv, Y. Ning, Y. Hu, Y. Hou, F. Teng, Plasma treatment of ITO cathode to fabricate free electron selective layer in inverted polymer solar cells. J. Mater. Chem. C. 2, 8715 (2014). [CrossRef] [Google Scholar]
  3. Y. Raitses, D. Staack, M. Keidar, N. J. Fisch, Electron-wall interaction in Hall thrusters. Phys. Plasmas. 12, 057104 (2005). [CrossRef] [Google Scholar]
  4. A. J. Perry, D. Vender, R. W. Boswell, The application of the helicon source to plasma processing. J. Vac. Sci. Technol. B 9, 310 (1991). [CrossRef] [Google Scholar]
  5. G. M. McCracken, P. E. Stott, Plasma-surface interactions in tokamaks. Nucl. Fusion. 19, 889 (1979). [CrossRef] [Google Scholar]
  6. G. D. Hobbs, J. A. Wesson, Heat flow through a Langmuir sheath in the presence of electron emission. Plasma Phys. 9, 85 (1967). [CrossRef] [Google Scholar]
  7. X. Y. Zhao, N. Xiang, J. Ou, D. H. Li, B. B. Lin, Sheath structure in plasma with two species of positive ions and secondary electrons. Chin. Phys. B 25, 025202 (2015). [Google Scholar]
  8. H. Amemiya, B. M. Annaratone, J. E. Allen, The double sheath associated with electron emission into a plasma containing negative ions. J. Plasma Phys. 60, 81 (1998). [CrossRef] [Google Scholar]
  9. G. C. Das, B. Singha, J. Chutia, Characteristic behavior of the sheath formation in thermal plasma. Phys. Plasmas. 6, 3685 (1999). [CrossRef] [Google Scholar]
  10. C. Anteneodo, C. Tsallis, Breakdown of exponential sensitivity to initial conditions: Role of the range of interactions. Phys. Rev. Lett. 80, 5313 (1998). [CrossRef] [Google Scholar]
  11. E. G. D. Cohen, Statistics and dynamics. Phys. A Stat. Mech. Appl. 305, 19 (2002). [CrossRef] [Google Scholar]
  12. C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479 (1988). [CrossRef] [Google Scholar]
  13. J. Du, Nonextensivity in nonequilibrium plasma systems with Coulombian long-range interactions. Phys. Lett. A 329, 262 (2004). [CrossRef] [Google Scholar]
  14. M. M. Hatami, Sheath structure in plasmas with nonextensively distributed electrons and thermal ions. Phys. Plasmas. 22, 023506 (2015). [CrossRef] [Google Scholar]
  15. S. Basnet, R. Khanal, Magnetized plasma sheath properties in the presence of Maxwellian low-temperature and non-Maxwellian high-temperature electrons. Phys. Plasmas 26, 043516 (2019). [CrossRef] [Google Scholar]
  16. M. Tribeche, L. Djebarni, and R. Amour, Ion-acoustic solitary waves in a plasma with a q-nonextensive electron velocity distribution. Phys. Plasmas 17, 042114 (2010). [CrossRef] [Google Scholar]
  17. M. M. Hatami, M. Tribeche, A. A. Mamun, Debye length and electric potential in magnetized nonextensive plasma. Phys. Plasmas. 25, 094502 (2018). [CrossRef] [Google Scholar]
  18. A. Asserghine, M. El Kaouini, H. Chatei, Investigation of magnetized plasma sheath in the presence of q-nonextensive electrons and negative ions. Mater. Today Proc. 24, 24 (2020). [CrossRef] [Google Scholar]
  19. R. Dhawan and H. K. Malik, Modelling of electronegative collisional warm plasma for plasma-surface interaction process. Plasma Sci. Technol. 23, 045402 (2021). [CrossRef] [Google Scholar]
  20. M. Sharifian, H. R. Sharifinejad, M. B. Zarandi, A. R. Niknam, Effect of q-non- extensive distribution of electrons on the plasma sheath floating potential. J. Plasma Phys. 80, 607 (2014). [CrossRef] [Google Scholar]
  21. N. N. Safa, H. Ghomi, A. R. Niknam, Effect of the q-nonextensive electron velocity distribution on a magnetized plasma sheath. Phys. Plasmas 21, 082111 (2014). [CrossRef] [Google Scholar]
  22. Y. Liu, S. Q. Liu, and L. Zhou, Bohm criterion in a dusty plasma with nonextensive electrons and cold ions. Phys. Plasmas 20, 043702 (2013). [CrossRef] [Google Scholar]
  23. D. R. Borgohain, K. Saharia, K. S. Goswami, Behavior of plasma sheath with nonextensively distributed two-temperature electrons and isothermal ions. Phys. Plasmas 23, 122113 (2016). [CrossRef] [Google Scholar]
  24. A. Asserghine, A. Missaoui, M. El Kaouini, H. Chatei, Numerical study of the effect of secondary electron emission on the sheath characteristics in q‐non‐extensive plasma. Contrib. Plasma Phys. 62, e202100084 (2022). [CrossRef] [Google Scholar]
  25. J. Seon, E. Lee, W. Choe, H. J. Lee, One-dimensional solution to the stable, space- charge-limited emission of secondary electrons from plasma-wall interactions. Curr. Appl. Phys. 12, 663 (2012). [CrossRef] [Google Scholar]
  26. J. Liu, F. Wang, J. Sun, Properties of plasma sheath with ion temperature in magnetic fusion devices. Phys. Plasmas 18, 013506 (2011). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.