Open Access
Issue |
E3S Web Conf.
Volume 632, 2025
The 5th Edition of Oriental Days for the Environment “Green Lab. Solution for Sustainable Development” (JOE5)
|
|
---|---|---|
Article Number | 04002 | |
Number of page(s) | 8 | |
Section | Renewable Energies & Circular Economy | |
DOI | https://doi.org/10.1051/e3sconf/202563204002 | |
Published online | 03 June 2025 |
- G.-L. Baron, B. Denis, Robotique pédagogique, d'un colloque l'autre; vers l'émergence d'une communauté scientifique?, Sci. Technol. Inf. Commun. Educ. Train., 1(1), 109-112 (1994). [Google Scholar]
- C. Depover, T. Karsenti, V. Komis, Enseigner avec les technologies: favoriser les apprentissages, développer des compétences. (Puq, 2007). [Google Scholar]
- M. El Malki, et al., Noise filter using a periodic system of dual Helmholtz resonators. Sci. Rep., 14(1), 24987 (2024). https://doi.org/10.1038/s41598-024-74799-2. [CrossRef] [Google Scholar]
- C. Colonius, An overview of simulation, modeling, and active control of flow/acoustic resonance in open cavities, in proceedings of 39th Aerospace Sciences Meeting and Exhibit, 2001, https://doi.org/10.2514/6.2001-76 [Google Scholar]
- D.O. Ludwigsen, C. Jewett, M. Jusczcyk, Better understanding of resonance through modeling and visualization. (2006). [Google Scholar]
- A. Rahafrooz, High frequency thermally actuated single crystalline silicon micromechanical resonators with piezoresistive readout, (University of Denver, 2011). [Google Scholar]
- A. Krynkin, et al., Scattering by coupled resonating elements in air. J. Physics D: App. Physics,. 44(12), 125501 (2011). https://doi.org/10.48550/arXiv.1101.2332 [CrossRef] [Google Scholar]
- R. Abdolvand, et al., Micromachined resonators, A Rev.. Micromach., 7(9), 160 (2016). https://doi.org/10.3390/mi7090160 [CrossRef] [Google Scholar]
- J. Han, et al., Vibration identification of folded-MEMS comb drive resonators. Micromach., 9(8), 381 (2018). https://doi.org/10.3390/mi9080381 [CrossRef] [Google Scholar]
- T. Voglhuber-Brunnmaier, B. Jakoby, Higher-order models for resonant viscosity and mass- density sensors, Sensors, 20(15), 4279 (2020). https://doi.org/10.3390/s20154279 [CrossRef] [Google Scholar]
- J.C. Esmenda, et al., Observing off-resonance motion of nanomechanical resonators as modal superposition. arXiv preprint arXiv: 2008, 02040 (2020). https://doi.org/10.48550/arXiv.2008.02040 [Google Scholar]
- M. El Malki, N. Pereira, S. Lanceros-Mendez, Noise reduction through periodic serial side branches containing two defects, in E3S Web Conf. 364, 03003, (2023). https://doi.org/10.1051/e3sconf/202336403003 [CrossRef] [EDP Sciences] [Google Scholar]
- W. Lu, W. Wang, J. Zhou, A Fourier-matching method for analyzing resonance frequencies by a sound-hard slab with arbitrarily shaped subwavelength holes. arXiv preprint arXiv: 2104, 02367 (2021). https://doi.org/10.48550/arXiv.2104.02367 [Google Scholar]
- A. Stein, M. Nouh, T. Singh, Widening, transition and coalescence of local resonance band gaps in multi-resonator acoustic metamaterials: From unit cells to finite chains. J. Sound Vibr., 523, 116716 (2022). https://doi.org/10.1016/j.jsv.2021.116716 [CrossRef] [Google Scholar]
- V. Klimov, Optical nanoresonators. Uspekhi Fizicheskikh Nauk, 193(3), 279-304 (2023)0 10.3367/UFNe.2022.02.039153 [CrossRef] [Google Scholar]
- R. Hedayati, S.P. Lakshmanan, Active acoustic metamaterial based on Helmholtz resonators to absorb broadband low frequency noise. Mater., 17(4), 962 (2024). https://doi.org/10.3390/ma17040962 [CrossRef] [Google Scholar]
- J.W. Jewett, R. Serway, Physics for scientists and engineers with modern physics. Vectors, 1(2), 633 (2010). [Google Scholar]
- J. Li, H. Chang Gea, Sound reduction of side-branch resonators: An energy-based theoretical perspective. AIP Adv., 14(3), (2024). https://doi.org/10.1063/5.0202598 [Google Scholar]
- R. Hedayati, S.P. Lakshmanan, Active Acoustic Metamaterial Based on Helmholtz Resonators to Absorb Broadband Low-Frequency Noise. Mater. 17(4), 962 (2024). https://doi.org/10.3390/ma17040962 [CrossRef] [Google Scholar]
- I. El-Atmani, et al., Acoustic Switch Device for a Splitter Acoustic Wave made by Waveguides and Resonator. in 2024 International Conference on Circuit, Systems and Communication (ICCSC). IEEE, 1-5 (2024). https://doi.org/10.1109/ICCSC62074.2024.10617267 [Google Scholar]
- Z.A. Zaky, et al. Properties of localized modes and acoustic band gaps using serial closed resonators in generalized Thue Morse quasi periodic sequences. Opt. Quant. Electron., 57, 273 (2025). https://doi.org/10.1007/s11082-025-08161-9 [CrossRef] [Google Scholar]
- A. Khettabi, D. Bria, M. Elmalki, New approach applied to analyzing a periodic Helmholtz resonator, JMES, 8(3), 816-824 (2017). [Google Scholar]
- Z. Kang, Z. Ji, Acoustic length correction of duct extension into a cylindrical chamber. J. Sound Vibr., 310(4-5), 782-791 (2008). https://doi.org/10.1016/J.JSV.2007.11.005 [CrossRef] [Google Scholar]
- W. Wu, Y. Guan, Numerical investigation on low-frequency noise damping performances of Helmholtz resonators with an extended neck in presence of a grazing flow. J. Low Freq. Noise Vib. Active Control., 40(4), 2037-2053 (2021). https://doi.org/10.1177/14613484211020584 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.