Open Access
Issue |
E3S Web Conf.
Volume 634, 2025
2025 3rd International Forum on Clean Energy Engineering (FCEE2025)
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 12 | |
Section | Sustainable Building Technologies | |
DOI | https://doi.org/10.1051/e3sconf/202563402003 | |
Published online | 20 June 2025 |
- J. B. West. (July 2004). Highest Permanent Human Habitation. High Altitude Medicine & Biology. [Online]. 3(4). pp. 401–407. Available: https://doi.org/https://doi.org/10.1089/15270290260512882 [Google Scholar]
- Censos Nacionales 2017: XII Censo de Población, VII de Vivienda y III de Comunidades Indígenas, 2017, Instituto Nacional de Estadística e Informática. Available: https://censo2017.inei.gob.pe/resultados-definitivos-de-los-censosnacionales-2017/ [Google Scholar]
- S. Singh, S. Maiti, R. S. Bisht, N. B. Balam, R. Solanki, A. Chourasia, S. K. Panigrahi, (February 2022). Performance behaviour of agro-waste based gypsum hollow blocks for partition walls. Scientific Reports. [Online]. 12(1). pp. 1–16. Available: https://doi.org/10.1038/s41598-022-07057-y [CrossRef] [PubMed] [Google Scholar]
- D. K. P. Quispe, J. C. R. Silva, C. F. e. Silva. (November 2021). Confort térmico en viviendas sociales en la zona Mesoandina de Perú – soluciones para mejorar la calefacción pasiva usando materiales autóctonos. Revista Latino-americana de Ambiente Construído & Sustentabilidade. [Online]. 2(6). Available: https://doi.org/10.17271/rlass.v2i6.2980 [Google Scholar]
- E. Mejia-Solis, J. Arias, B. Palm. (October 2023). Simple solutions for improving thermal comfort in huts in the highlands of Peru. Heliyon. [Online]. 9(10). E19709. Available: https://doi.org/10.1016/j.heliyon.2023.e19709 [CrossRef] [PubMed] [Google Scholar]
- D. Resano, R. Rodriguez, O. Guillen. “Passive Comfort Strategies for Typical Peruvian Meso-Andean Houses”. IOP Conference Series: Earth and Environmental Science, 2021, 943(1), 012029. Available: https://doi.org/10.1088/1755-1315/943/1/012029 [Google Scholar]
- M. Wieser, “Consideraciones bioclimáticas en el diseño arquitectónico: el caso peruano,” in Multiple Access, 10 th ed. Pontificia Universidad Católica de Perú. [Google Scholar]
- Thermal Comfort In Natural Ventilation-A Neurophysiological Hypothesis, R. D. Dear and G. S. Brager, 1998. Available: https://escholarship.org/content/qt4qq2p9c6/qt4qq2p9c6.pdf [Google Scholar]
- M. Wieser, S. Onnis, G. Meli. (January 2020). Desempeño térmico de cerramientos de tierra alivianada: posibilidades de aplicación en el territorio peruano. Revista de Arquitectura (Bogotá). [Online]. 22(1). pp. 164–174. Available: https://doi.org/10.14718/RevArq.2020.2633 [Google Scholar]
- EM.110 Confort Térmico y Lumínico con Eficiencia Energética. Reglamento Nacional de Edificaciones, Perú. 2016. Available: https://www.gob.pe/institucion/munisantamariadelmar/informes-publicaciones/2619729-em-110-confort-termico-y-luminico-con-eficiencia-energetica [Google Scholar]
- CTCS Código técnico de construcción sostenible. Ministerio de Vivienda, Construcción y Saneamiento, Perú. 2021. Available: https://cdn.www.gob.pe/uploads/document/file/1934704/C%C3%B3digo%20-%20CTCS%20.pdf [Google Scholar]
- A. Ali, A. Issa, A. Elshaer. (October 2004). A Comprehensive Review and Recent Trends in Thermal Insulation Materials for Energy Conservation in Buildings. Sustainability. [Online]. 16(20). pp. 8782. Available: https://doi.org/10.3390/su16208782 [Google Scholar]
- M. Á. Navacerrada, D. de la P. Caballero, A. Sesmero, A. Pedrero, T. Gómez, G. P. F. Morales, (March 2021). Comportamiento acústico y térmico de materiales basados en fibras naturales para la eficiencia energética en edificación. Informes de la construcción. [Online]. 73(561). pp. e373. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=7890963 [CrossRef] [Google Scholar]
- L. C. Aza, “La totora como material de aislamiento térmico: propiedades y potencialidades,” M.S. thesis, Dept. Architecture, Polytechnic University of Cataluña, Barcelona, Spain, 2016. [Google Scholar]
- K. Villa, C. Echavarría, D. Blessent, K. Villa, C. Echavarría, D. Blessent. (July 2019). Wood walls insulated with coconut fiber. DYNA. [Online]. 86(210). pp. 333–337. Available: https://doi.org/10.15446/dyna.v86n210.73685 [CrossRef] [Google Scholar]
- J. Gutiérrez, C. Cadena, A. Bula. (April 2019). Thermal insulation produced from rice husk agglomerated using starch produced by saccharomyces cerevisiae. DYNA. [Online]. 81(184). pp. 138–143. Available: https://doi.org/10.15446/dyna.v81n184.37679 [Google Scholar]
- D. Resano, O. W. Guillen, F. D. R. Ubillús, J. L. Barranzuela. (April 2022). Caracterización fisicoquímica del bagazo de caña de azúcar industrial y artesanal como material de construcción. Información tecnológica. [Online]. 33(2). pp. 247–258. Available: https://doi.org/10.4067/S0718-07642022000200247 [CrossRef] [Google Scholar]
- D. Kumar, M. Alam, P. X. W. Zou, J. G. Sanjayan, R. A. Memon. (October 2020). Comparative analysis of building insulation material properties and performance. Renewable and Sustainable Energy Reviews. [Online]. 131. pp. 110038. Available: https://doi.org/10.1016/j.rser.2020.110038 [CrossRef] [Google Scholar]
- S. Kumfu, T. Jintakosol. (April 2012). Thermal Insulation Produced from Pineapple Leaf Fiber and Natural Rubber Latex. Advanced Materials Research. [Online]. 506. pp. 453–456. Available: https://doi.org/10.4028/www.scientific.net/AMR.506.453 [CrossRef] [Google Scholar]
- Yusuhara Marche (Japan), [Building], K. Kuma, (2010). [Google Scholar]
- House in Zoetemeer (The Netherlands), [Building], A. Reas, (2010). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.