Open Access
Issue
E3S Web Conf.
Volume 642, 2025
5th European Conference on Unsaturated Soils and Biotechnology applied to Geotechnical Engineering (EUNSAT2025 + BGE)
Article Number 05005
Number of page(s) 6
Section BGE - Soil Improvement using Biotechnology
DOI https://doi.org/10.1051/e3sconf/202564205005
Published online 14 August 2025
  1. N.N.T. Huynh, N.H.T. Khoi. Increasing Bio- Cementation Efficiency Through Microbially Induced Calcium Carbonate Precipitation with Nano-Calcite for Sand, Sandy Soil, and Granular Materials. In European Conference on Object- Oriented Programming, 386-393, Springer Nature Singapore (1996, July). [Google Scholar]
  2. D. Mujah, M. Shahin, A., & Cheng, L. State-of-the- Art Review of Biocementation by Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization. Geomicrobiol. J., 34(6), 524–537 (2017). [Google Scholar]
  3. R. Cardoso, I. Borges, J. Vieira, S.O.D. Duarte, G.A. Monteiro. Interactions between clay minerals, bacteria growth and urease activity on biocementation of soils. Appl. Clay Sce., 240, 106972 (2023a). [Google Scholar]
  4. R. Cardoso, J. Vieira, I. Borges. On the use of biocementation to treat collapsible soils. Eng. Geol., 313, 106971 (2023b). [Google Scholar]
  5. L. Cheng, R. Cord-Ruwisch, M.A. Shahin, Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Can. Geotech. J., 50(1), 81–90 (2013). [Google Scholar]
  6. D. Terzis, R. Bernier-Latmani, L. Laloui. Fabric characteristics and mechanical response of bio- improved sand to various treatment conditions. Géotech. Lett., 6(1), 50–57 (2016). [Google Scholar]
  7. D. Terzis, L. Laloui. 3-D micro-architecture and mechanical response of soil cemented via microbial-induced calcite precipitation. Sci. Rep., 8(1), 1416 (2018). [Google Scholar]
  8. E. Yang, S. Baek, T.H. Kwon, T.S. Yun. X-ray CT- based interpretation of microbial-induced carbonate precipitation and local hydraulic behaviors. Eng. Geol., 330, 107426 (2024). [Google Scholar]
  9. M. Seifan, N. Ranjbar. Application of Microbial Induced Calcite Precipitation (MICP) for Coastal Soil Stabilization. Environ. Geotech., 7(3), 181-190 (2020). [Google Scholar]
  10. V.S. Whiffin, A.S. Pugh. Use of Microorganisms to Improve the Strength and Durability of Building Materials. J. App. Microbiol., 103(2), 401-410 (2007). [Google Scholar]
  11. T. Fu, A.C. Saracho, S.K. Haigh. Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review. Biogeotechnics, 1(1), 100002 (2023). [CrossRef] [Google Scholar]
  12. M. Zakavi, H. Askari, M. Shahrooei. Isolation and characterization of a resistance Bacillus subtilis for soil stabilization and dust alleviation purposes. Sci Rep 14, 25490 (2024). [Google Scholar]
  13. A. Gallo, F. Sposito, M. Longo, G. Lazzaro, C. G. Caruso, S. Morici, S., ... & R. Alduina. Perturbations in Microbial Communities at Hydrothermal Vents of Panarea Island (Aeolian Islands, Italy). Biology, 14(1), 86 (2025). [Google Scholar]
  14. B. M. Zeldes, M. W. Keller, A. J. Loder, C. T. Straub, M. W. Adams, & R. M. Kelly. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Frontiers in microbiology, 6, 1209 (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.