Open Access
Issue
E3S Web Conf.
Volume 642, 2025
5th European Conference on Unsaturated Soils and Biotechnology applied to Geotechnical Engineering (EUNSAT2025 + BGE)
Article Number 05006
Number of page(s) 7
Section BGE - Soil Improvement using Biotechnology
DOI https://doi.org/10.1051/e3sconf/202564205006
Published online 14 August 2025
  1. S. Li, C. Li, and X. Fu, “Characteristics of soil salt crust formed by mixing calcium chloride with sodium sulfate and the possibility of inhibiting wind-sand flow,” Sci Rep, vol. 11, no. 1, p. 9746, 2021, doi: 10.1038/s41598-021-89151-1. [Google Scholar]
  2. R. Cardoso, I. Borges, J. Vieira, S. O. D. Duarte, and G. A. Monteiro, “Interactions between clay minerals, bacteria growth and urease activity on biocementation of soils,” Appl Clay Sci, vol. 240, p. 106972, 2023, doi: https://doi.org/10.1016/j.clay.2023.106972. [Google Scholar]
  3. B. Scott et al., “Abiotic crust formation in fallow agricultural desert soils through carbonate cementation reduces fugitive dust,” Cambridge Prisms: Drylands, vol. 2, p. e3, Nov. 2025, doi: 10.1017/dry.2024.5. [Google Scholar]
  4. N. Bolan et al., “Chapter Two - Distribution, characteristics and management of calcareous soils,” in Advances in Agronomy, vol. 182, D. L. Sparks, Ed., in Advances in Agronomy, vol. 182. , Academic Press, 2023, pp. 81–130. doi: https://doi.org/10.1016/bs.agron.2023.06.002. [Google Scholar]
  5. J. A. Ippolito, T. F. Ducey, K. B. Cantrell, J. M. Novak, and R. D. Lentz, “Designer, acidic biochar influences calcareous soil characteristics,” Chemosphere, vol. 142, pp. 184–191, 2016, doi: https://doi.org/10.1016/j.chemosphere.2015.05.09 2. [Google Scholar]
  6. Y. Wang, W. Chen, P. Li, Z. Yin, J. Yin, and N. Jiang, “Soil improvement using biostimulated MICP: Mechanical and biochemical experiments, reactive transport modelling, and parametric analysis,” Comput Geotech, vol. 172, p. 106446, 2024, doi: https://doi.org/10.1016/j.compgeo.2024.106446. [Google Scholar]
  7. G. El Mountassir, J. M. Minto, L. A. van Paassen, E. Salifu, and R. J. Lunn, Applications of Microbial Processes in Geotechnical Engineering, vol. 104. 2018. doi: 10.1016/bs.aambs.2018.05.001. [Google Scholar]
  8. C.-S. Tang et al., “Desiccation cracking of soils: A review of investigation approaches, underlying mechanisms, and influencing factors,” Earth Sci Rev, vol. 216, p. 103586, 2021, doi: https://doi.org/10.1016/j.earscirev.2021.103586. [Google Scholar]
  9. D. Li, B. Yang, C. Yang, Z. Zhang, and M. Hu, “Effects of salt content on desiccation cracks in the clay,” Environ Earth Sci, vol. 80, no. 19, p. 671, 2021, doi: 10.1007/s12665-021-09987-8. [Google Scholar]
  10. D. G. Fredlund and A. Xing, “Equations for the soil-water characteristic curve,” vol. 3, no. 31, Mar. 1994. [Google Scholar]
  11. B. Liu et al., “Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP),” Eng Geol, vol. 264, Jan. 2020, doi: 10.1016/j.enggeo.2019.105389. [Google Scholar]
  12. B. Liu et al., “Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP),” Eng Geol, vol. 264, Jan. 2020, doi: 10.1016/j.enggeo.2019.105389. [Google Scholar]
  13. V. S. Whiffin, L. A. van Paassen, and M. P. Harkes, “Microbial Carbonate Precipitation as a Soil Improvement Technique,” Geomicrobiol J, vol. 24, no. 5, pp. 417–423, Aug. 2007, doi: 10.1080/01490450701436505. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.