Open Access
| Issue |
E3S Web Conf.
Volume 655, 2025
International Conference on Chemical and Material Engineering in conjunction with the International Symposium on Applied Chemistry (ICCME-ISAC 2025)
|
|
|---|---|---|
| Article Number | 01014 | |
| Number of page(s) | 6 | |
| Section | Chemical Engineering | |
| DOI | https://doi.org/10.1051/e3sconf/202565501014 | |
| Published online | 27 October 2025 | |
- Abriyani, E., Syalomita, D., Apriani, I. P., Puspawati, I., Adiputra, S., & Nadeak, Z. T, Pengaruh Pengolahan Termal Terhadap Struktur Molekul Material Polimer Studi Dengan Spektroskopi FTIR. Innovative: Journal of Social Science Research. 4, (2024). [Google Scholar]
- Cheng, X., Liu, Y., Wang, K., Yu, H., Yu, S., & Liu, S., High-Efficient Conversion of Cellulose to Levulinic Acid Catalyzed via Functional Brønsted– Lewis Acidic Ionic Liquids: Conversion of Cellulose to Levulinic Acid via Dual Functional Acidic Ionic Liquids. Catalysis Letters. 152, (2022). https://doi.org/10.1007/s10562-021-03701w [Google Scholar]
- Fonseca, J. M., Spessato, L., Cazetta, A. L., da Silva, C., & Almeida, V. de C, Sulfonated carbon: synthesis, properties and production of biodiesel. Chemical Engineering and Processing Process Intensification. 170, 108668 (2021). https://doi.org/10.1016/j.cep.2021.108668 [Google Scholar]
- Halliru, A., Hassan, L.G., & Muhammad, A. S., Optimization of Levulinic Acid Production from Groundnut Shell Using Taguchi Orthogonal Array Design. Bayero Journal of Pure and Applied Sciences, 12, (2019). https://doi.org/10.4314/bajopas.v12i1.51S. [Google Scholar]
- Lee, J. P., Lee, J., & Min, K., Development of bioprocess for corncob-derived levulinic acid production. Bioresource Technology, 371, 128628 (2023). https://doi.org/10.1016/j.biortech.2023.128628. [Google Scholar]
- Lorente, A., Huertas-Alonso, A. J., Salgado-Ramos, M., González-Serrano, D. J., Sánchez-Verdú, M. P., Cabañas, B., Hadidi, M., & Moreno, A., Microwave radiation-assisted synthesis of levulinic acid from microcrystalline cellulose: Application to a melon rind residue. International Journal of Biological Macromolecules. 237, (2023). https://doi.org/10.1016/j.ijbiomac.2023.124149 [Google Scholar]
- Martin, M. M., Introduction to Software for Chemical Engineers Second Edition. CRC Press. (2020) [Google Scholar]
- Qing, Q., Guo, Q., Wang, P., Qian, H., Gao, X., & Zhang, Y. (2018). Kinetics study of levulinic acid production from corncobs by tin tetrachloride as catalyst. Bioresource Technology. 260, (2018). https://doi.org/10.1016/j.biortech.2018.03.073 [Google Scholar]
- Rapado, P., Garcés, D., Faba, L., & Ordóñez, S., Zeolite-assisted acid hydrolysis of cellulose: Optimization of reaction conditions and chemical pretreatments for enhancing HMF yields. Industrial Crops and Products. 212, 118309 (2024). [Google Scholar]
- Ren, H., Girisuta, B., Zhou, Y., & Liu, L., Selective and recyclable depolymerization of cellulose to levulinic acid catalyzed by acidic ionic liquid. Carbohydrate Polymers. 117, (2015). https://doi.org/10.1016/j.carbpol.2014.09.091 [Google Scholar]
- Samarghandi, M. R., Asgari, G., Shokoohi, R., Dargahi, A., & Arabkouhsar, A., Removing amoxicillin antibiotic from aqueous solutions by Saccharomyces cerevisiae bioadsorbent: kinetic, thermodynamic and isotherm studies. Desalination and Water Treatment, 152, 306-315. https://doi.org/10.5004/dwt.2019.23941 [Google Scholar]
- Tang, Z. E., Lim, S., Pang, Y. L., Shuit, S. H., & Ong, H. C., Utilisation of biomass wastes based activated carbon supported heterogeneous acid catalyst for biodiesel production. Renewable Energy. 158, (2020). https://doi.org/10.1016/j.renene.2020.05.119 [Google Scholar]
- Toif, M. E., Hidayat, M., Rochmadi, R., & Arief Budiman. Reaction Kinetics of Levulinic Acid Synthesis from Glucose Using Bronsted Acid Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 16, (2021). https://doi.org/10.9767/bcrec.16.4.12197.904-915 [Google Scholar]
- Victor, A., Sharma, P., Pulidindi, I. N., & Gedanken, A., Levulinic Acid Is a Key Strategic Chemical from Biomass †. Catalysts. 12, (2022). https://doi.org/10.3390/catal12080909 [Google Scholar]
- Zailan, Z., Tahir, M., Jusoh, M., & Zakaria, Z. Y., A review of sulfonic group bearing porous carbon catalyst for biodiesel production. Renewable Energy, 175, (2021). https://doi.org/10.1016/j.renene.2021.05.030 [Google Scholar]
- Zhang, J., Lin, Y., Zhao, S., Chen, W., Ma, Q., Ma, L., & Chang, C., An enhanced in situ fed-batch hydrolysis and kinetic study for producing biomassbased levulinic acid at high solid loadings. Fuel, 355, 129447 (2024). https://doi.org/10.1016/j.fuel.2023.129447 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

