Open Access
Issue
E3S Web Conf.
Volume 656, 2025
2025 6th International Conference on Urban Engineering and Management Science (ICUEMS 2025)
Article Number 02012
Number of page(s) 7
Section Sustainable Management and Environment
DOI https://doi.org/10.1051/e3sconf/202565602012
Published online 30 October 2025
  1. Li, C., Yin, Z., Tan, G. (2025) Research on the Interaction between Internet Rental Bike and Urban Public Transportation-A Case Study of Kunming. Modern management, 15:97-107. DOI: 10.12677/MM.2025.151014. [Google Scholar]
  2. Zhou H., Zhang, C. , Li, H. (2020) Influencing factors on the coopetition relationship between publicbus and bike sharing based on travelers’ choice. Journal af Chang'an Universisoeinl [Seienee Edition], 22(02):48-61. [Google Scholar]
  3. Ye. M., Wang. S., Gao. C., Kang, H. (2023) Travel Patterns Comparison Between Sharing Bikes and Sharing E-bikes Close to Metro Stations - Case Study of Shijiazhuang. China transportaton review, 45(02):143-151. [Google Scholar]
  4. Yin. A., Chen. X., Haitao, H. , Morris, A. , Yuan, Q. , Ma. X., Yang, Z. (2025) Shared e-bikes demand in urban mobility: Temporal heterogeneity, driving factors, and strategic implications. Travel Behaviour and Society, DOI: 10.1016/J.TBS.2025.101075. [Google Scholar]
  5. Bai. Y., Liu. X., Huang. Y., Li. C., Wan. X. (2018) The Influence of Shared Bicycle on Urban Rail Transit Operation and Management in Beijing. Urban Rail Transit. 31(03):119-124. DOI: 1672-6073(2018)03-0119-06. [Google Scholar]
  6. Wu J., Dong. H., Tang. G. (2025) Bike-sharing ridership prediction incorporating spatiotemporal correlation of demand features. Joumalof Tmnsportation Engineering and Information. 1–15. DOI: 10.19961/j.cnki.1672-4747.07.035. [Google Scholar]
  7. Cao. T., Fan. Y., Zhang. Z. Xu. Y. (2025) Research on the Connection between Shared Bicycles and Buses Based on GIS Big Data Analysis: A Case Study of Shenzhen City. People’s Public Transportation. 2025(14): 132–135. DOI: 10.16857/j.cnki.cn11-5903/u.2025.14.038. [Google Scholar]
  8. Sheng. L., Xiao. Y., Zhu. W. (2025) Research on the non-motor vehicle parking spaceat the entrance of the subway station and its optimization strategy. Shanxi Architecture. 51(12): 132–137. DOI: 10.13719/j.cnki.1009-6825.2025.12.030. [Google Scholar]
  9. Guo. G., Ming. D., Liu. S., Zhang. R., Zou. Y. (2025) A study on the mobility characteristics and visitation laws of different kinds of bike sharing. Contral and Decision. 1–11. DOI: 10.13195/j.kzyjc.2024.1463. [Google Scholar]
  10. Wen. Z., Hu. L., Hu. J. (2025) Impact of Shared Bicycle Spatial Patterns During Public Health Emergencies: A Case Study in the Core Area of Beijing. ISPRS International Journal of Geo-Information. 14: 92–92. DOI: 10.3390/IJGI14020092. [Google Scholar]
  11. You. E., Ma. X. (2025) Research on influencing factors of shared bicycle travel demand: taking Shanghai as an example. Intelligent Computer and Applications. 15(01): 18–23. DOI: 10.20169/j.issn.2095-2163.24052801. [Google Scholar]
  12. Quan. Y., Wu. X., Zhu. Z., Liu. C. (2024) Origin-Destination Spatial-Temporal Patterns of Dockless Shared Bikes Based on Shopping Activities and Its Application in Urban Planning: The Case of Nanjing. Systems. DOI: 10.3390/SYSTEMS12110506. [Google Scholar]
  13. Stanislav. K., Jaroslav. M., Marián, G. , (2024) Estimating Motives for Renting Shared Bicycles Using Multinomial Logistic Regression: A Case Study from the Slovak Republic. Applied Sciences. 14(22): 10345–10345. DOI: 10.3390/APP142210345. [Google Scholar]
  14. Yin. Z., Hao. M., Zhang. W., Li. C. (2020) Spatiotemporal Distribution Characteristics of Shared Bike Based on Users' Cycling Big Data. Transport Research. 6(06): 73–82. DOI: 10.16503/j.cnki.2095-9931.2020.06.009. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.