Open Access
Issue
E3S Web Conf.
Volume 657, 2025
2nd International Conference on Sustainability and Technology in Climate Change (2nd IC-STCC 2025)
Article Number 04003
Number of page(s) 11
Section Economics
DOI https://doi.org/10.1051/e3sconf/202565704003
Published online 03 November 2025
  1. A. A. S. Alsuwailem, E. Salem, and A. K. J. Saudagar, “Performance of Different Machine Learning Algorithms in Detecting Financial Fraud,” Comput. Econ., vol. 62, no. 4, pp. 1631–1667, Dec. 2023, doi: 10.1007/S10614-022-10314-X. [Google Scholar]
  2. Y. Chen and Z. Wu, “Financial Fraud Detection of Listed Companies in China: A Machine Learning Approach,” ion of Listed Companies in China: A Machine Learning Approach,” Sustainability, 2022, doi: 10.3390/su15010105. [Google Scholar]
  3. I. F. S. Wahyuningrum, A. Chegenizadeh, N. G. Humaira, M. A. Budihardjo, and H. Nikraz, “Corporate Governance Research in Asian Countries: A Bibliometric and Content Analysis (2001–2021),” Sustainability, 2023, doi: 10.3390/su15086381. [Google Scholar]
  4. M. Papík and L. Papíková, “Detecting accounting fraud in companies reporting under US GAAP through data mining,” Int. J. Account. Inf. Syst., vol. 45, Jun. 2022, doi: 10.1016/J.ACCINF.2022.100559; [Google Scholar]
  5. M. A. K. Achakzai and P. Juan, “Using machine learning Meta-Classifiers to detect financial frauds,” Financ. Res. Lett. vol. 48, Aug. 2022, doi: 10.1016/J.FRL.2022.102915; [Google Scholar]
  6. M. Jhanattan, “Model Komunikasi Advokasi Pencegahan Korupsi Pada Media Publikasi Humas Lembaga KPK,” IKRA-ITH Hum. J. Sos. dan …, vol. 4, no. 3, pp. 105–110, 2020. [Google Scholar]
  7. C. R. G. Popescu and A. L. Luque, “Exploring the Synergies Between Environmental Social Governance and AI for Business Sustainability: Tackling Climate Adaptation, Mitigating Climate Change Efforts, and Pursuing Climate Justice,” Universitatea din Bucuresti, Bucharest, Romania: IGI Global, 2024, pp. 1–41. doi: 10.4018/979-8-3693-1151-6.ch001. [Google Scholar]
  8. P. Martínez‐Córdoba, V. Amor‐Esteban, B. Benito, and I. Sánchez, “The Commitment of Spanish Local Governments to Sustainable Development Goal 11 From a Multivariate Perspective,” Sustainability, 2021, doi: 10.3390/su13031222. [Google Scholar]
  9. R. Dong, C. Shao, S. Xin, and Z. Lu, “A Sustainable Development Evaluation Framework for Chinese Electricity Enterprises Based on SDG and ESG Coupling,” Sustainability, 2023, doi: 10.3390/su15118960. [Google Scholar]
  10. Q. Wang, Y. Li, U. K. Pata, and R. Li, “Artificial intelligence and global carbon inequality: Addressing the challenges and opportunities for SDG 10, SDG 12, and SDG 13,” Geosci. Front., vol. 16, no. 4, 2025, doi: 10.1016/j.gsf.2025.102072. [Google Scholar]
  11. Dyah Kuntorini, Dwi Angreni, D. Kuntorini, A. Rizki, and O. Satria, “Building Capacity dalam Pendidikan Anti Korupsi,” J. Ilmu Adm. Negara ASIAN (Asosiasi Ilmuwan Adm. Negara), vol. 10, no. 2, pp. 459–471, 2022, doi: 10.47828/jianaasian.v10i2.108. [Google Scholar]
  12. P. A. Bambang Irawan, Tasya Kamila Putri, Zarina Zulkifli, “Public Perception of Health Insurance Technology-Based Innovation in Indonesia,” J. Adm. Publik (Public Adm. Journal), vol. 13, no. 1, pp. 31–40, Jun. 2023, doi: 10.31289/jap.v13i1.7904. [Google Scholar]
  13. A. Al Ali, A. M. Khedr, M. El-Bannany, and S. Kanakkayil, “A Powerful Predicting Model for Financial Statement Fraud Based on Optimized XGBoost Ensemble Learning Technique,” Appl. Sci., vol. 13, no. 4, Feb. 2023, doi: 10.3390/APP13042272; [Google Scholar]
  14. T. Achmad, C.-Y. Huang, M. A. Putra, and I. D. Pamungkas, “Strategy Model for Detecting Potential Fraudulent Financial Statements of State-Owned Enterprises in Indonesia: Fraud Heptagon Theory Analysis with Big Data Analytics, Risk Management, and Sustainable Development Goals (SDGS),” J. Lifestyle SDGs Rev., 2024, doi: 10.47172/2965-730x.sdgsreview.v5.n02.pe03659. [Google Scholar]
  15. M. Narayan, P. Shukla, and R. Kanth, “AI-Driven Fraud Detection and Prevention in Decentralized Finance: A Systematic Review,” … Financ. Futur. Financ., 2024. [Google Scholar]
  16. W. Hilal, S. A. Gadsden, and J. Yawney, “Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances,” Expert Syst. Appl., vol. 193, May 2022, doi: 10.1016/J.ESWA.2021.116429; [Google Scholar]
  17. A. Singh, A. Jain, and S. E. Biable, “Financial Fraud Detection Approach Based on Firefly Optimization Algorithm and Support Vector Machine,” Appl. Comput. Intell. Soft Comput., vol. 2022, pp. 1–10, Jun. 2022, doi: 10.1155/2022/1468015; [Google Scholar]
  18. J. Dorminey, A. Scott Fleming, M. J. Kranacher, and R. A. Riley, “The evolution of fraud theory,” Issues Account. Educ., vol. 27, no. 2, pp. 555–579, 2012, doi: 10.2308/iace-50131. [Google Scholar]
  19. J. Heitzig, W. Barfuß, and J. F. Donges, “A Thought Experiment on Sustainable Management of the Earth System,” Sustainability, 2018, doi: 10.3390/su10061947. [Google Scholar]
  20. I. D. Pamungkas, I. Oktavianasari, Fathimah, and A. N. Jasmine, “The Role of Audit Committee and Institutional Ownership as Moderating: Analysis Fraud Heptagon in Indonesia,” WSEAS Trans. Bus. Econ., vol. 21, pp. 2665–2677, 2024, doi: 10.37394/23207.2024.21.218. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.