Issue |
E3S Web Conf.
Volume 40, 2018
River Flow 2018 - Ninth International Conference on Fluvial Hydraulics
|
|
---|---|---|
Article Number | 02036 | |
Number of page(s) | 7 | |
Section | River morphodynamics and restoration | |
DOI | https://doi.org/10.1051/e3sconf/20184002036 | |
Published online | 05 September 2018 |
Characterization of bedload discharge in bores and very unsteady flows in an ephemeral channel
1
Ben-Gurion University of the Negev, Unit of Environmental Engineering, Israel
2
Ben-Gurion University of the Negev, Geography and Environmental Development, Israel
3
The University of Texas at Austin, Geological Sciences, U.S.A
4
Loughborough University, Geography, England
Bedload flux under steady flow conditions is calculated by a multitude of available methods and equations. Yet, very little is known about the effect of very unsteady flows, such as flash floods and specifically bores, on bedload flux. The unpredictable nature of the floods together with many logistic difficulties and safety issues in monitoring explain this gap in knowledge. Global climate change may increase flood event occurrence, making their understanding even more crucial. The methodology of our study is based on automatically monitoring bedload flux (Reid slot samplers). Automation allowed high frequency monitoring of hydraulic parameters and bedload flux. Added novelty includes pipe and plate microphones for capturing acoustic signals of bedload sediments and 3-D velocimetry for characterizing turbulence. Alerting sensors and cellular data transmission enabled onsite presence upon bore arrival. Calibration between the acoustic indirect sensors and the direct slot samplers allows determination of bedload flux at a frequency of 1 Hz. Analyses of flood events indicate an increase in turbulent kinetic energy, instantaneous vertical velocities, shear stress and bedload flux during the rising limb within the first two minutes after bore arrival. This has implications for the likely destabilization of the channel bed and for bedload transport after passage of the bore and during subsequent, less unsteady flows.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.