Issue |
E3S Web Conf.
Volume 94, 2019
International Symposium on Global Navigation Satellite System 2018 (ISGNSS 2018)
|
|
---|---|---|
Article Number | 03015 | |
Number of page(s) | 4 | |
Section | GNSS Today and Future | |
DOI | https://doi.org/10.1051/e3sconf/20199403015 | |
Published online | 08 May 2019 |
Integration of GNSS-IMU for increasing the observation accuracy in Condensed Areas (Infrastructure and Forest Canopies)
Geomatics Engineering Department, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia
* Corresponding author: cahyadi@geodesy.its.ac.id
Position determination using satellite navigation system has grown significantly. It provides geospatial with global coverage called GNSS (Global Navigation System Satellite). GNSS satellites consists of GLONASS, GPS (Global positioning system) and Galileo.GPS is the most commonly used system and it is known to its capability to determine 3D position on the surface of the earth. In order to determine the position, a GPS receiver must be able to receive signals from at least four GPS satellites. However, the determination of position in condensed areas such as tunnels, area surrounded by high rise buildings, highly forested and in other closely-knit areas is not achieved because satellite signals cannot reach the receiver in the above-mentioned areas and also others where the signals are reflected before being received by a GPS receiver. In this paper, we present the algorithm to fuse GPS and the inertial measurement unit (IMU) to enable positioning in the above-mentioned Condensed Areas. The standard deviations of the two measurements show that GPS-IMU is better than GPS alone, the standard deviation when satellite outages occurred is - 4.57475 for GPS-IMU measurements and 0.218675 for GPS observations. We presented the results in graphics and it shows that GPS measurements are easily disturbed by external influence such as multipath but GPS-IMU graphic is continuous and robust. The advantages and disadvantages of GPS and INS are complementary and make them work together to enable the accurate measurements in the areas mentioned above. Integration of INS and GNSS can be classified into three types, loosely coupled Kalman filter, tightly coupled Kalman filters and ultratight coupled Kalman filter. In this research we used loosely coupled Kalman filter and tightly coupled Kalman filters to combine GPS and INS in one system.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.