Issue |
E3S Web Conf.
Volume 195, 2020
4th European Conference on Unsaturated Soils (E-UNSAT 2020)
|
|
---|---|---|
Article Number | 03032 | |
Number of page(s) | 6 | |
Section | Experimental Evidence and Techniques | |
DOI | https://doi.org/10.1051/e3sconf/202019503032 | |
Published online | 16 October 2020 |
Preliminary investigation on the water retention behaviour of cement bentonite mixtures
1 Politecnico di Torino, DISEG. Corso Duca degli Abruzzi 24, 10129 Torino, Italy
2 Politecnico di Milano, DICA, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
3 Italian Ministry of Economic Development DGS-UNMIG
* e-mail: guido.musso@polito.it
Cement bentonite mixtures are often used to build slurry walls for the containment of both aqueous and non aqueous pollutants, due to their quite low hydraulic conductivity and relatively high ductility and strength. Although their hydro-mechanical behaviour in saturated conditions has been studied in the past, a part of the slurry wall is expected to rest above the groundwater level. The hydraulic characterization in unsaturated conditions is then particularly relevant to evaluate the performance of the barrier, especially when it is aimed at containing non aqueous pollutant liquids which are lighter than water (LNAPL). These non wetting fluids rest above the water table and their penetration is possible just if the barrier is unsaturated. This paper presents some preliminary results of a laboratory characterization of the water retention behaviour of three different cement bentonite mixtures. The mixtures, prepared at cement – bentonite mass ratios ranging from 4:1 to 6:1, were immersed in water and cured for 28 days. Their water retention behaviour was then determined along drying and wetting paths through different techniques, namely axis translation, filter paper and vapour equilibrium. In the high suction range, the water content – suction relationship was found to be independent of cement-bentonite ratio. In the low suction range, the water content at a given suction was found to decrease for increasing cement bentonite ratios.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.