Issue |
E3S Web Conf.
Volume 195, 2020
4th European Conference on Unsaturated Soils (E-UNSAT 2020)
|
|
---|---|---|
Article Number | 02029 | |
Number of page(s) | 6 | |
Section | Teoretical and Numerical Models | |
DOI | https://doi.org/10.1051/e3sconf/202019502029 | |
Published online | 16 October 2020 |
Modelling evaporation processes of cement-bentonite mixtures
1 Politecnico di Torino, DISEG, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
2 Politecnico di Milano, DICA, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
* Corresponding author: guido.musso@polito.it
Upon drying, matter and energy are exchanged between the atmosphere and porous media through evaporation, which is a coupled process that involves the simultaneous transport of liquid water, water vapour and heat. At shallow depths, evaporation controls the water content and suction of both natural soils and earthworks, affecting their hydraulic response. This impact is particularly relevant when the earthworks are aimed at the containment of aqueous or non-aqueous pollutants, as in the case of cement bentonite cut-off walls. A coupled model for the transport of liquid water, water vapour and heat through cement bentonite mixtures upon evaporation was formulated. The model considers flow of water driven by both total suction and temperature gradients. Model predictions were compared to experimental results obtained in the laboratory on samples having different sizes and imposed boundary conditions. A good agreement between predicted and measured volumetric water contents was obtained, once defined a suitable dependency of the relative permeability of the mixture on degree of saturation. The results suggest that the proposed formulation correctly accounts for the underlying physical processes, and that it might be used to model the real scale behaviour of cut-off walls.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.