Issue |
E3S Web Conf.
Volume 8, 2016
Mineral Engineering Conference MEC2016
|
|
---|---|---|
Article Number | 01029 | |
Number of page(s) | 1 | |
DOI | https://doi.org/10.1051/e3sconf/20160801029 | |
Published online | 16 September 2016 |
Bacterial bioleaching of low grade nickel limonite and saprolite ores by mixotrophic bacteria
1 Department of Metallurgical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
2 Geomicrobiology-Biomining & Biocorrosion Laboratory, Microbial Culture Collection Laboratory, Biosciences and Biotechnology Research Center, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, West Java, Indonesia
a Corresponding author: skchaerun@gmail.com
Utilization of indigenous bacteria should be considered to establish a successful biohydrometallurgical process. In this study, mixrotrophic iron-oxidizing bacterial consortia consisting of Comamonas testosteroni, Alicyclobacillus ferrooxydans and Pantoea septic which were isolated from Indonesian mineral ores were examined to determine their abilities to recover nickel from limonite and saprolite ores in the bioleaching experiments using stirred tank reactors. The nickel bioleaching experiments inoculated with the bacterial consortia were carried out using coarse limonite ores and weathered saprolite ores with pulp density of 10% w/v. Abiotic controls were also carried out replacing the inocula by the sterile medium. The bioleaching processes were monitored by measuring Ni and Fe contents and pH of the leaching solution as well as the total bacterial enzymatic activity measured as FDA hydrolytic activity. The effect of leaching on the mineralogy of laterite ores was investigated by the scanning electron microscope equipped with energy-dispersive spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD). After 28 days of incubation, the FDA hydrolytic activity was observed in both bioleaching experiments containing limonite (17.2 μg fluorescein/mL) and saprolite ores (16.9 μg fluorescein/mL). The leached Ni and Fe in the bioleaching experiments containing limonite ores (30% Ni and 5.6% Fe) was greater than that in abiotic controls (1% Ni and 0.1% Fe) with the pH range of 2.5 to 3.5. However, the bacterial consortia were less capable of bioleaching of Ni (2.5%) with the similar leached Fe (6%) from the saprolite ores. In abiotic controls, the medium pH remained relatively constant (pH 6). It was concluded that these bacterial isolated as the consortium were capable of nickel bioleaching (precious metal) more effectively than iron (gangue metal), thus being applicable to the commercial processing of the difficult-to-process low-grade nickel laterite ores in Indonesia.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.