Issue |
E3S Web Conf.
Volume 10, 2016
1st International Conference on the Sustainable Energy and Environment Development (SEED 2016)
|
|
---|---|---|
Article Number | 00103 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/e3sconf/20161000103 | |
Published online | 17 October 2016 |
A novel method of sewage sludge pre-treatment - HTC
Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
a Corresponding author: mwilk@agh.edu.pl
The aim of the paper is to present a relatively new technology – hydrothermal carbonization (HTC) of municipal sewage sludge. The HTC process was conducted in a stainless steel, Zipperclave Stirred Reactor, with a volume of 1000 ml, equipped with a MagneDrive Agitator. The control panel provides a programme which regulates the heater temperature and mixer speed. The main parameters of the process were temperature (~200°C), pressure (~1.5 MPa) and residence time (4, 7, 10, and 12 h). In order to understand the process, the physical, chemical, thermal, and structural characteristics of the solid product, hydrochar, was investigated. Therefore, the ultimate and proximate analyses, and HHV for raw material and obtained hydrochar are presented. The majority of carbon, of the initial present carbon, remained within hydrochar. TA analysis was used to detect the initial and final temperature for the combustion of raw material and hydrochar. This technique is very useful for predicting the combustion characteristics of carbonaceous material. When considering the use of hydrochar as a solid fuel, more energy can be derived from hydrochar than from e.g. incineration of waste, and its carbon emission should be less significant. Therefore, HTC can be an environmentally beneficial technique for the combustion process.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.