Issue |
E3S Web Conf.
Volume 38, 2018
2018 4th International Conference on Energy Materials and Environment Engineering (ICEMEE 2018)
|
|
---|---|---|
Article Number | 03036 | |
Number of page(s) | 5 | |
Section | Water Conservancy and Civil Engineering | |
DOI | https://doi.org/10.1051/e3sconf/20183803036 | |
Published online | 04 June 2018 |
Numerical Analysis on Tensile Properties of Grout-filled Splice Sleeve Rebars under ISO 834 Standard Fire
School of Civil Engineering, Shenyang Jianzhu University, Shenyang, Liaoing 110168, China
* Corresponding author: ceyjliu@sjzu.edu.cn
This paper presents some numerical simulation results of tensile properties of reinforcing bars spliced by grout-filled coupling sleeves under fire conditions to identify the effect of load ratio on fire resistance time of spliced reinforcing bars, which provide a useful base for predicting structural behaviors of pre-cast reinforced concrete buildings in fires. A spliced rebar system investigated in this paper consists of two equal-diameter steel reinforcing bars with 25mm diameter and a straight coupling sleeve with 50mm outer and 45mm inner diameters. As a result, the thickness of grout between steel bars and sleeves are 20mm. Firstly, the temperature distributions in steel bars connected by grout- filled coupling sleeves exposed to ISO 834 standard fire were calculated utilizing finite element analysis software ANSYS. Secondly, the stress changes in heated steel bars connected by grout-filled coupling sleeves under different constant tensile loads were calculated step by step until the rebar system failed due to fire. Thus, the fire resistant time of rebar spliced by grout-filled coupling sleeves under different axial tensile loads can be determined, further, the relationship between fire resistance time and axial tensile loads ratio can could be obtained. Finally, the fire resistant times versus axial tensile load ratios curve of grout-filled splice sleeve rebars exposed to ISO 834 standard fire is presented.
© The Authors, published by EDP Sciences, 2018.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.