Issue |
E3S Web Conf.
Volume 40, 2018
River Flow 2018 - Ninth International Conference on Fluvial Hydraulics
|
|
---|---|---|
Article Number | 02023 | |
Number of page(s) | 8 | |
Section | River morphodynamics and restoration | |
DOI | https://doi.org/10.1051/e3sconf/20184002023 | |
Published online | 05 September 2018 |
Influence of hydrology, sediment supply and sediment gradation on river bar morphodynamics: application to the Loire River at Bréhémont (France)
1
Laboratoire d'Hydraulique Saint-Venant, École des Ponts ParisTech, EDF R&D, CEREMA ( Chatou, France )
2
Laboratoire National d'Hydraulique et Environnement - EDF R&D ( Chatou, France )
3
CEREMA ( Chatou, France )
4
IHE Delft ( Delft, The Netherlands )
5
Ecole Polytechnique Universitaire de Tours ( Tours, France ) & UMR CNRS 7324 CITERES
* e-mail: florian.cordier@edf.fr
Rivers inherently show heterogeneous sediment sizes and can also show a strong sediment supply variability in time because of natural episodic events or as a consequence of human activities, which alter the characteristics and dynamics of alluvial bars at the macro-scale. The impact of the combination between sediment size heterogeneity and sediment supply variation, or even with other forcings (i.e. hydrology, channel geometry) remains poorly documented. In this work, a physics-based numerical model is applied on a trained reach of a sandy-gravel bed river to investigate the combination of these parameters on bar morphodynamics. The morphodynamic computations are performed with a two-dimensional depth-averaged hydrodynamic solver, internally coupled to a sediment transport and bed evolution module, which estimate the transport of graded sediment and model bed stratigraphy, respectively. A 1 km long reach of the Loire River at Bréhémont (France) is selected to conduct the numerical investigations. The interaction between several forcing mechanisms induces highly complex bar morphodynamic processes in this area.A comprehensive set of high-definition data is available, which allows to study the river morphodynamics for a succession of three flooding events and a period of low flows. Based on this model, a variety of scenarios is presented with the aim of exploring the implications of sediment gradation, geometrical and boundary forcing effects on in situ bars morphodynamics.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.