Issue |
E3S Web Conf.
Volume 44, 2018
10th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK 2018
|
|
---|---|---|
Article Number | 00008 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/e3sconf/20184400008 | |
Published online | 03 July 2018 |
Immobilization of Anammox biomass in sodium alginate
Environmental Biotechnology Department, Silesian University of Technology, Akademicka 2, Gliwice, Poland
* Corresponding author: anna.banach@polsl.pl
Anaerobic ammonium oxidation (anammox) is a process of ammonium and nitrite conversion into nitrogen gas. Nowadays, anammox is applied into many wastewater treatment plants worldwide. However, anammox bacteria are characterized by a slow growth rate, which may cause problems in maintaining the biomass in the system. The promising technique which can help to maintain the biomass in the reactor and effectively prevent loss of anammox bacteria from a system is immobilization. Selection and optimization of the appropriate immobilization technique for investigated biomass is crucial for conducting an effective process. One of the ways for bacteria immobilization is gel entrapment. The main goal of the study was to test sodium alginate as an immobilization medium for anammox biomass. In the present study procedure of immobilization in sodium alginate was optimised, then the mechanical and chemical properties of the obtained pellets were investigated. Series of batch experiments revealed that immobilized anammox biomass was able to remove ammonia and nitrite nitrogen effectively. The calculated specific anammox activity (SAA) for immobilized anammox biomass was 0.18 g N·gVSS-1·d-1, while for non-immobilized biomass was 0.36 g N·gVSS-1·d-1.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.