Issue |
E3S Web Conf.
Volume 53, 2018
2018 3rd International Conference on Advances in Energy and Environment Research (ICAEER 2018)
|
|
---|---|---|
Article Number | 03010 | |
Number of page(s) | 5 | |
Section | Environment Engineering, Environmental Safety and Detection | |
DOI | https://doi.org/10.1051/e3sconf/20185303010 | |
Published online | 14 September 2018 |
Observation of a Severe Wind Case Caused by Gust Front and Its Boundary Layer Structures Characteristics
1
Binhai New Area Meteorological Office of Tianjin, Tianjin 300457, China
2
Tianjin Weather Modification Office, Tianjin 300074, China
* Corresponding author: swallownx@163.com
Based on Doppler radar 3D-composited reflectivity, wind profiler radar, boundary layer Tianjin tower of 255m as well as intensified automatic surface observation data, the evolution of the boundary layer associated with two successive gust front processes in the evening of 10 June 2016 and the intensity of the related disastrous surface high wind were analyzed. The results shown as follows: (1) To the same storm cell, the wind intensity caused by the outflow boundary in the main body was stronger than the wind caused by the gust front. The intensity of the disastrous high wind was related to the maximum descending velocity in the boundary layer and the associated height. The stronger the maximum descending velocity and the lower the level, the stronger the disastrous high wind was. (2) The tower data indicated, as the approaching of the gust front, convergence fluctuations first emerged at low(20m) and middle(120m) levels of the tower, leading the emergence of disastrous high wind by 8 minutes. When the gust front passed over, the maximum variations of cooling and the wind velocity were in pace with each other.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.