Issue |
E3S Web Conf.
Volume 89, 2019
The 2018 International Symposium of the Society of Core Analysts (SCA 2018)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 7 | |
Section | Laboratory Core Analysis | |
DOI | https://doi.org/10.1051/e3sconf/20198901003 | |
Published online | 29 March 2019 |
Determination of Electrical Parameters in Carbonates with Micro-CT, NMR and Gas Displacement Experiments
1
Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China ;
2
Yangtze University, Jingzhou 434023
* corresponding author: wang_kw@126.com
Understanding the electrical characteristics of carbonate formation and accurately determining the electrical parameters (cementation exponent m and saturation exponent n in Archie equation) are very important for carbonate formations evaluation. However, the study of electrical characteristics faces great challenge because of the variable pore types, the complicated pore structure and the big heterogeneity in carbonates. We selected representative carbonate cores to carry out experiment research based on newly developed technologies in digital core analysis and resistivity test. Three types of cores were selected: the void space is mainly intergranular and intercrystalline; the vugs are developed; the fractures are developed. Firstly, the porosity and permeability of the selected cores have been tested. Then micro-CT with high resolution is used to scan the cores and NMR T2 spectrums of the cores both in water-saturated state and in bound water state are obtained. Finally, the resistivity of the cores in different water saturation is tested by using gas displacement technology. The analysis results of the experimental data show that the intergranular and intercrystalline pore and the fracture both have great influence on R0 while the influence of secondary vug on R0 is slight. Cementation exponent m and saturation exponent n have great difference between different cores and there is no obvious relation between m, n and reservoir parameters (φ or K). However, if we classify the cores based on the pore type, and the values of both m and n have good relationship with bound water saturation.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.