Issue |
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
|
|
---|---|---|
Article Number | 17006 | |
Number of page(s) | 6 | |
Section | Physical Modelling | |
DOI | https://doi.org/10.1051/e3sconf/20199217006 | |
Published online | 25 June 2019 |
Rainfall induced erosion of soils used in earth roads
1
University of Birmingham, Civil Engineering Department, School of Engineering, B15 2TT, United Kingdom
2
University of Birmingham, School of Engineering, B15 2TT, United Kingdom
* Corresponding author: nesdras01@gmail.com
Earth roads in rural areas of the developing world are key engines to the development of countries. They give access to education and health services, sustain agriculture and businesses, and promote social interactions between communities. However, earth roads suffer substantially from poor engineering and funding for construction and maintenance. Rainfall is probably their most dangerous enemy resulting in soil particle detachment leading to the loss of surface material. A laboratory rainfall simulator was used to identify the performance of an earth road surface compacted at the maximum dry density against rainfall energy and surface flow. Under the rain intensity of 30mm/hr, erosion increased with rain duration from 0 to 30 minutes. Fine sand (0.06 – 0.02mm) and medium sand (0.02 – 0.6mm) particles eroded faster than coarse sand (0.6 – 2mm) and gravel (> 2mm) particles of the sediments collected at 5 minutes intervals of time. Additionally, a 20cm x 20cm photograph at the same place was analysed using ImageJ software and showed reduction in number of particles from 18554 at 10 min to 5803 at 25 min as smaller particles had eroded in the meantime.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.