Issue |
E3S Web Conf.
Volume 94, 2019
International Symposium on Global Navigation Satellite System 2018 (ISGNSS 2018)
|
|
---|---|---|
Article Number | 04001 | |
Number of page(s) | 5 | |
Section | Geodynamics and Natural Hazard | |
DOI | https://doi.org/10.1051/e3sconf/20199404001 | |
Published online | 08 May 2019 |
Improving Detection Performance of Ionospheric Disturbances due to Earthquake by Optimization of Sequential Measurement Combination
1
Mechanical and Aerospace Engineering, and the SNU-IAMD, Seoul National University, Seoul 08826, Korea
2
Ecole Nationale de l’Aviation Civile (ENAC), Toulouse 31400, France
3
Agency for Defense Development, Daejeon 305-600, Korea
* Changdon Kee: kee@snu.ac.kr
Energy generated from earthquake (EQ) is transferred to the ionosphere and results in co-seismic ionospheric disturbances (CID). CID can be observed in the ionospheric combination using L1, L2 frequency carrier phase. As ionospheric trend due to normal conditions such as elevation angle of satellites is generally larger than disturbances, a proper measure is required to extract disturbance signals. Derivative, or sequential combination, is a simple and effective way to remove the normal trend in the ionospheric delay. When using derivative, however, disturbance signals can often be obscured by noise due to its small amplitude. In order to reduce the noise while preserving the time rate of data, and thus to improve signal-to-noise ratio (SNR), we designed a new derivative method using optimization under a couple of assumptions. With simulation data, it is found that N, the number of epochs used for sequential combination, turned out to be the best when N=160 with maximum SNR. Finally, the proposed algorithm’s SNR was compared to that of the previous study which also used derivative method. 120~260% improvements were observed for the proposed method compared to the conventional method.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.