Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 01061 | |
Number of page(s) | 7 | |
Section | Advanced HVAC&R&S Technology | |
DOI | https://doi.org/10.1051/e3sconf/201911101061 | |
Published online | 13 August 2019 |
Contributions to System Integration of PV and PVT Collectors with Heat Pumps in Buildings
University of Applied Sciences and Arts Northwestern Switzerland, 4132, Muttenz, Switzerland
* Corresponding author: manuel.koch@fhnw.ch
A common approach to improve self-consumption of photovoltaic (PV) generation in buildings with heat pumps (HP) is to overload the thermal storage capacities during times with surplus PV generation (hereinafter referred to as thermal overloading). The impact of battery capacity and domestic hot water (DHW) consumption on the effectiveness of this method in a single-family home (SFH) is evaluated through numerical simulations. Increased battery capacity is shown to decrease the effectiveness of thermal overloading. Regarding DHW consumption, temporal concentration is shown to have a stronger influence on the effectiveness of thermal overloading than total energy. Furthermore, the potential of photovoltaic-thermal collectors (PVT) as heat exchangers for air/brine/water heat pumps (ABWHP) is estimated. The results show that the properties of PVT collectors with high thermal conductivity are in the feasible range for application in a well-insulated SFH in Central European climate.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.