Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 04037 | |
Number of page(s) | 8 | |
Section | High Energy Performance and Sustainable Buildings, Simulation models and predictive tools for the buildings HVAC, IEQ and energy | |
DOI | https://doi.org/10.1051/e3sconf/201911104037 | |
Published online | 13 August 2019 |
Optimal design of an indoor environment using an adjoint RNG k-ε turbulence model
1 Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
2 School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
* Corresponding author: yanchen@purdue.edu
The computational fluid dynamics (CFD)-based adjoint method can determine design variables of an indoor environment according to the optimal design objective, such as minimal predicted mean vote (PMV) for thermal comfort. The method calculates the gradient of the objective function over the design variables so that the objective function can be minimized along the fastest direction using an optimization algorithm. Since the RNG k-ε model is the most popular model used in CFD, the corresponding adjoint equations of the turbulence model should be solved during the design process, rather than the “frozen turbulence” assumption used in the existing approach. This investigation developed adjoint equations for the RNG k-ε turbulence model and applied it to a two-dimensional ventilated cavity. Design processes with the adjoint RNG k-ε turbulence model led to a near-zero design function for the cavity case, while that one with the RNG k-ε turbulence model did not.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.