Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 06069 | |
Number of page(s) | 9 | |
Section | Sustainable Urbanization and Energy System Integration | |
DOI | https://doi.org/10.1051/e3sconf/201911106069 | |
Published online | 13 August 2019 |
Aerogel, a high performance material for thermal insulation - A brief overview of the building applications
Technical University of Civil Engineering of Bucharest, code 020396. Lacul Tei Bvd. 122-124, Bucharest, Romania
* Corresponding author: larisamelita@gmail.com
In this paper data regarding the utilization of aerogel as a promising material for thermal insulation of the residential and commercial buildings are presented. Also, research work and developments in synthesis, properties and characterization of silica aerogels will be addressed. Aerogel is a synthetic porous ultralight material derived from a gel in which the liquid component of the gel has been replaced with a gas. The result is a solid with extremely low density and low thermal conductivity. Sol-gel is the most used method of preparation. Aerogel melts at 1200ºC and the thermal conductivity is almost 0. Is a solid material with the smallest density because contains about 99.8% air. This material has almost unlimited potential, believing that they might find application in most human activities and areas. Aerogel insulation is a good choice because nearly neutralizes all three methods of heat transfer: convection, conduction and radiation. The resistance to convective transfer is given by the fact that air does not circulate in the material structure. The resistance to thermal transfer by conduction is given by the majority of gaseous components. If using a carbon based gel, a high resistance to radiation transfer is obtained. Therefore, the most used aerogel for thermal insulation is the silica aerogel with carbon as nanostructured material. The high price makes it currently inaccessible and less used material. But, inevitably, the aerogel will quickly become one of the most attractive materials in the future.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.