Open Access
Issue
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
Article Number 06069
Number of page(s) 9
Section Sustainable Urbanization and Energy System Integration
DOI https://doi.org/10.1051/e3sconf/201911106069
Published online 13 August 2019
  1. Thomas, G.P., What is Aerogel? Theory, Properties and Applications, in AZO MATERIALS. 2012. [Google Scholar]
  2. Ziegler, C., et al., Modern Inorganic Aerogels. Angewandte Chemie International Edition, 2017. 56(43): p. 13200–13221. [CrossRef] [Google Scholar]
  3. Soleimani Dorcheh, A. and M.H. Abbasi, Silica aerogel; synthesis, properties and characterization. Journal of Materials Processing Technology, 2008. 199(1): p. 10–26. [CrossRef] [Google Scholar]
  4. Ülker, Z., D. Sanli, and C. Erkey, Chapter 8 - Applications of Aerogels and Their Composites in Energy-Related Technologies, in Supercritical Fluid Technology for Energy and Environmental Applications, V. Anikeev and M. Fan, Editors. 2014, Elsevier: Boston. p. 157-180. [Google Scholar]
  5. Baetens, R., B.P. Jelle, and A. Gustavsen, Aerogel insulation for building applications: a state-of-the-art review. Energy and Buildings, 2011. 43(4): p. 761–769. [Google Scholar]
  6. Cao, X., X. Dai, and J. Liu, Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy and Buildings, 2016. 128: p. 198–213. [Google Scholar]
  7. Agency, I.E., Global Status Report 2017. 2017. [Google Scholar]
  8. Comission, E. Energy performance of buildings. 2019; Available from: https://ec.europa.eu/energy/en/topics/energy-efficiency/energy-performance-of-buildings. [Google Scholar]
  9. Ürge-Vorsatz, D., et al., Heating and cooling energy trends and drivers in buildings. Renewable and Sustainable Energy Reviews, 2015. 41: p. 85–98. [CrossRef] [Google Scholar]
  10. Karaaslan, M., J. F. Kadla, and F. Ko, Lignin-Based Aerogels. 2016. p. 67–93. [Google Scholar]
  11. Cuce, E., et al., Toward aerogel based thermal superinsulation in buildings: A comprehensive review. Renewable and Sustainable Energy Reviews, 2014. 34: p. 273–299. [Google Scholar]
  12. Riffat, S.B. and G. Qiu, A review of state-of-the-art aerogel applications in buildings. International Journal of Low-Carbon Technologies, 2012. 8(1): p. 1–6. [CrossRef] [Google Scholar]
  13. Buratti, C. and E. Moretti, Glazing systems with silica aerogel for energy savings in buildings. Applied Energy, 2012. 98: p. 396–403. [Google Scholar]
  14. Hanus, M.J. and A.T. Harris, Nanotechnology innovations for the construction industry. Progress in Materials Science, 2013. 58(7): p. 1056–1102. [Google Scholar]
  15. Liu, S., et al., A novel building material with low thermal conductivity: Rapid synthesis of foam concrete reinforced silica aerogel and energy performance simulation. Energy and Buildings, 2018. 177: p. 385–393. [Google Scholar]
  16. Hüsing, N. and U. Schubert, Aerogels—Airy Materials: Chemistry, Structure, and Properties. Angewandte Chemie International Edition, 1998. 37(1‐2): p. 22-45. [CrossRef] [Google Scholar]
  17. Aegerter, M.A., N. Leventis, and M.M. Koebel, Aerogel Handbook ed. A.i. Sol-Gel and D.M.a. Technologies. 2011, New York: Springer New York. [CrossRef] [Google Scholar]
  18. Pekala, R.W., Organic aerogels from the polycondensation of resorcinol with formaldehyde. Journal of Materials Science, 1989. 24(9): p. 3221–3227. [Google Scholar]
  19. Biener, J., et al., Advanced carbon aerogels for energy applications. Energy & Environmental Science, 2011. 4(3): p. 656–667. [Google Scholar]
  20. Glora, M., et al., Integration of carbon aerogels in PEM fuel cells. Journal of Non-Crystalline Solids, 2001. 285(1): p. 283–287. [Google Scholar]
  21. Li, L., et al., Flexible Nanofiber-Reinforced Aerogel (Xerogel) Synthesis, Manufacture, and Characterization. ACS Applied Materials & Interfaces, 2009. 1(11): p. 2491–2501. [CrossRef] [PubMed] [Google Scholar]
  22. Liao, Y., et al., Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites. Journal of Sol-Gel Science and Technology, 2012. 63(3): p. 445–456. [Google Scholar]
  23. de la Rosa-Fox, N., et al., Nanoindentation on hybrid organic/inorganic silica aerogels. Journal of the European Ceramic Society, 2007. 27(11): p. 3311–3316. [Google Scholar]
  24. Feng, J., C. Zhang, and J. Feng, Carbon fiber reinforced carbon aerogel composites for thermal insulation prepared by soft reinforcement. Materials Letters, 2012. 67(1): p. 266–268. [Google Scholar]
  25. Worsley, M.A., et al., Mechanically robust and electrically conductive carbon nanotube foams. Applied Physics Letters, 2009. 94(7): p. 073115. [Google Scholar]
  26. Leventis, N., et al., Nanoengineering Strong Silica Aerogels. Nano Letters, 2002. 2(9): p. 957–960. [Google Scholar]
  27. Casula, M.F., A. Corrias, and G. Paschina, Iron oxide–silica aerogel and xerogel nanocomposite materials. Journal of Non-Crystalline Solids, 2001. 293-295: p. 25-31. [Google Scholar]
  28. The Sol‐Gel Handbook. 2015: 2015 Wiley‐VCH Verlag GmbH & Co. KGaA. [Google Scholar]
  29. Moreno-Castilla, C. and F.J. Maldonado-Hódar, Carbon aerogels for catalysis applications: An overview. Carbon, 2005. 43(3): p. 455–465. [Google Scholar]
  30. Kistler, S.S. and A.G. Caldwell, Thermal Conductivity of Silica Aërogel. Industrial & Engineering Chemistry, 1934. 26(6): p. 658–662. [CrossRef] [Google Scholar]
  31. Hrubesh, L.W. and R.W. Pekala, Thermal properties of organic and inorganic aerogels. Journal of Materials Research, 2011. 9(3): p. 731–738. [Google Scholar]
  32. Lee, J.K., G.L. Gould, and W. Rhine, Polyurea based aerogel for a high performance thermal insulation material. Journal of Sol-Gel Science and Technology, 2009. 49(2): p. 209–220. [Google Scholar]
  33. LU, X., et al., Thermal Conductivity of Monolithic Organic Aerogels. Science, 1992. 255(5047): p. 971–972. [Google Scholar]
  34. Lee, J.K. and G.L. Gould, Polydicyclopentadiene based aerogel: a new insulation material. Journal of Sol-Gel Science and Technology, 2007. 44(1): p. 29–40. [Google Scholar]
  35. Rigacci, A., et al., Preparation of polyurethane-based aerogels and xerogels for thermal superinsulation. Journal of Non-Crystalline Solids, 2004. 350: p. 372–378. [Google Scholar]
  36. Fischer, F., et al., Cellulose-based aerogels. Polymer, 2006. 47(22): p. 7636–7645. [Google Scholar]
  37. 2020, E.C.D. 2020 climate & energy package. Available from: https://ec.europa.eu/clima/policies/strategies/2020_en. [Google Scholar]
  38. Dowson, M., et al., Predicted and in situ performance of a solar air collector incorporating a translucent granular aerogel cover. Energy and Buildings, 2012. 49: p. 173–187. [Google Scholar]
  39. Akimov, Y.K., Fields of Application of Aerogels (Review). Instruments and Experimental Techniques, 2003. 46(3): p. 287–299. [CrossRef] [Google Scholar]
  40. Wernery, J., et al., Aerobrick — An aerogel-filled insulating brick. Energy Procedia, 2017. 134: p. 490–498. [Google Scholar]
  41. Jelle, B.P., Aerogel Insulation for Building Applications, in The Sol‐Gel Handbook. [Google Scholar]
  42. Lucchi, E., et al., Thermal performance evaluation and comfort assessment of advanced aerogel as blown-in insulation for historic buildings. Building and Environment, 2017. 122: p. 258–268. [Google Scholar]
  43. Berardi, U., Aerogel-enhanced systems for building energy retrofits: Insights from a case study. Energy and Buildings, 2018. 159: p. 370–381. [Google Scholar]
  44. Schultz, J.M., K.I. Jensen, and F.H. Kristiansen, Super insulating aerogel glazing. Solar Energy Materials and Solar Cells, 2005. 89(2): p. 275–285. [CrossRef] [Google Scholar]
  45. Jensen, K.I., J.M. Schultz, and F.H. Kristiansen, Development of windows based on highly insulating aerogel glazings. Journal of Non-Crystalline Solids, 2004. 350: p. 351–357. [Google Scholar]
  46. Schultz, J.M. and K.I. Jensen, Evacuated aerogel glazings. Vacuum, 2008. 82(7): p. 723–729. [Google Scholar]
  47. Reim, M., et al., Highly insulating aerogel glazing for solar energy usage. Solar Energy, 2002. 72(1): p. 21–29. [CrossRef] [Google Scholar]
  48. Reim, M., et al., Silica-aerogel granulate – Structural, optical and thermal properties. Journal of Non-Crystalline Solids, 2004. 350: p. 358–363. [Google Scholar]
  49. Reim, M., et al., Silica aerogel granulate material for thermal insulation and daylighting. Solar Energy, 2005. 79(2): p. 131–139. [CrossRef] [Google Scholar]
  50. Gao, T., B.P. Jelle, and A. Gustavsen, Building Integration of Aerogel Glazings. Procedia Engineering, 2016. 145: p. 723–728. [Google Scholar]
  51. Wang, H., et al., Feasibility and optimization of aerogel glazing system for building energy efficiency in different climates. International Journal of Low-Carbon Technologies, 2014. 10(4): p. 412–419. [CrossRef] [Google Scholar]
  52. Huang, Y. and J.-l. Niu, Energy and visual performance of the silica aerogel glazing system in commercial buildings of Hong Kong. Construction and Building Materials, 2015. 94: p. 57–72. [Google Scholar]
  53. Yang, J., et al., Numerical and experimental study on the thermal performance of aerogel insulating panels for building energy efficiency. Renewable Energy, 2019. 138: p. 445–457. [Google Scholar]
  54. Gibiat, V., et al., Acoustic properties and potential applications of silica aerogels. Journal of Non-Crystalline Solids, 1995. 186: p. 244–255. [Google Scholar]
  55. Zhang, Y., R. Yang, and R. Zhao, A model for analyzing the performance of photocatalytic air cleaner in removing volatile organic compounds. Atmospheric Environment, 2003. 37(24): p. 3395–3399. [Google Scholar]
  56. Maleki, H., Recent advances in aerogels for environmental remediation applications: A review. Chemical Engineering Journal, 2016. 300: p. 98–118. [CrossRef] [Google Scholar]
  57. Minju, N., et al., Amine impregnated porous silica gel sorbents synthesized from water–glass precursors for CO2 capturing. Chemical Engineering Journal, 2015. 269: p. 335–342. [CrossRef] [Google Scholar]
  58. Company, A.A. Aspen Aerogels Company. 2019; Available from: https://www.aerogel.com/. [Google Scholar]
  59. Berardi, U., 17 - Aerogel-enhanced insulation for building applications, in Nanotechnology in Eco-efficient Construction (Second Edition), F. Pacheco-Torgal, et al., Editors. 2019, Woodhead Publishing. p. 395-416. [Google Scholar]
  60. Du, Y. and H.-e. Kim, A Market Research on the Development Trends of Aerogel Daily Clothing. 한국의류산업학회지, 2019. 21(1): p. 96–103. [Google Scholar]
  61. Fesmire, J.E., Aerogel insulation systems for space launch applications. Cryogenics, 2006. 46(2): p. 111–117. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.