Issue |
E3S Web Conf.
Volume 114, 2019
International Conference of Young Scientists “Energy Systems Research 2019”
|
|
---|---|---|
Article Number | 06005 | |
Number of page(s) | 5 | |
Section | Advanced Energy Technologies | |
DOI | https://doi.org/10.1051/e3sconf/201911406005 | |
Published online | 04 September 2019 |
Experimental study of transient processes in the elements of climatic systems
Novosibirsk State University of Architecture and Civil Engineering (Sibstrin), Novosibirsk, Russia
Transition processes for different modes of functioning of elements of the climate system model are experimentally investigated and analyzed. The following elements have been selected as the objects of experimental research: the air heater and the fan as the main elements that are part of each climate system. The system under study consisted of the following sequential elements: air heater-fan-room. The relative excess heat is proposed as a dimensionless parameter in the analysis and normalization of experimental data. First, the relative excess heat takes into account changes in temperature, moisture content and flow rate of humid air, and secondly, allows identifying similarities in the processes of change over time of the thermodynamic state of the air when passing through the climate system elements for different operating modes of the fan and air heater. Analysis of the evolution of relative excess heat during transient changes in the parameters of the flow of humid air, as in case of abrupt changes in performance of a heater but with a fixed performance of a fan and in case of abrupt changes in performance of a fan, but with a fixed power of the air heater. The regularities of the evolution of relative excess heat in the flow of moist air and its most important qualitative types when passing through the elements of the model climate system are shown. It was found that the types of behavior of relative excess heat depend only on the state in which the elements of the system are located during the transition process, and not on the element itself as a physical object.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.