Issue |
E3S Web Conf.
Volume 156, 2020
4th International Conference on Earthquake Engineering & Disaster Mitigation (ICEEDM 2019)
|
|
---|---|---|
Article Number | 02018 | |
Number of page(s) | 9 | |
Section | Geotechnical | |
DOI | https://doi.org/10.1051/e3sconf/202015602018 | |
Published online | 02 April 2020 |
Nonlinear Dynamic Analysis Adopting Effective Stress Approach of an Embankment Involving Liquefaction Potential
1 Professor, Faculty of Civil and Environment Engineering, Institut Teknologi Bandung, Indonesia
2 Research Assistant, Faculty of Civil and Environment Engineering, Institut Teknologi Bandung,, Indonesia
* Corresponding author: 1995.ahmadsulaiman@gmail.com
Stability of an embankment under earthquake loads is challenging in the process of analysis and design. Some embankment design consist of saturated granular material that is potential to liquefaction. Earthquake loads to the embankment under this conditions is one of major cause of embankment failure. Seismic performance involving stress-deformations and excess-pore-water pressure was evaluated in this paper. The evaluation adopts effective stress approach with non-linear elasto-plastic constitutive model. Numerical simulations through parametric studies were performed to estimate minimum density and embankment height efficiently to tolerate lateral displacements due to liquefaction. A number of parametric analyses were performed to investigate the relationships among relative densities of sand, ground accelerations, embankment height to excess-pore-pressure and lateral displacement of the embankment. The liquefaction analysis is conducted numerically using a finite difference method FLAC Dynamic 2D software adopting Finn-Byrne constitutive model.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.