Issue |
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
|
|
---|---|---|
Article Number | 11004 | |
Number of page(s) | 7 | |
Section | Hygrothermal boundary conditions | |
DOI | https://doi.org/10.1051/e3sconf/202017211004 | |
Published online | 30 June 2020 |
Pressure distribution around the thermal envelope - a parametric study of the impact from wind and temperature on contaminant transport within a building
Chalmers University of Technology, Sven Hultins gata 6, 412 58 Gothenburg, Sweden
* Corresponding author: fredrik.domhagen@chalmers.se
Several school buildings in Sweden have indoor air quality problems. The contaminant source is often assumed to come from within the construction, for example from the crawl space or attic space. Contaminants, in these cases, are transported by air leaking between compartments in the building. Here, the driving force for the air leakage is difference in pressure and, therefore, determining pressure also determines the direction of contaminant transport. In many cases, measures to improve the air quality are taken without a thorough understanding of how it might affect the pressure distribution in the building. In this paper a numerical model is used to examine how different climate scenarios and different building configurations affect the leakage and contaminant transport in a building with a crawl space. Results show that for leaky buildings the ventilation rate increases with increased wind and therefore the contaminant concentration decreases. The worst scenario in terms of high contaminant concentration is mild days with little wind. Also, when installing an exhaust fan in the crawl space with the purpose to prevent air from leaking from the crawl space to the classroom it is advisable to also consider the airtightness and the climate, not only the pressure difference across the floor.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.