Issue |
E3S Web Conf.
Volume 195, 2020
4th European Conference on Unsaturated Soils (E-UNSAT 2020)
|
|
---|---|---|
Article Number | 04009 | |
Number of page(s) | 6 | |
Section | Special Session on Energy Geotechnics | |
DOI | https://doi.org/10.1051/e3sconf/202019504009 | |
Published online | 16 October 2020 |
Hydro-mechanical behaviour of a pellets based bentonite seal: Numerical modelling of lab scale experiments
1 Université de Liège, Département ArGEnCo - Géotechnique, Géomécanique et Géologie de l'Ingénieur - 4000, Liège 1, Belgique
2 ANDRA - Agence Nationale pour la gestion des Déchets Radioactifs - 92298, Châtenay-Malabry, France
3 CEA - Commissariat à l’énergie atomique et aux énergies alternatives - 91191, Gif sur Yvette, France
* Corresponding author: Liliana.gramegna@uliege.be
In most of the concept designs for nuclear waste disposals, bentonite-based materials are used to seal underground galleries and shafts. In order to assess the safety of such engineered barriers and to provide a good prediction for the material behaviour, a number of experimental campaigns and constitutive models have been developed mainly focusing on bentonite compacted blocks. On the other hand, in recent years, the use of high density bentonite pellets combined with powdered bentonite has also been considered as an interesting alternative. The bentonite pellets mixtures present a prominent initial heterogeneity level as a result of the inter-pellets porosity, which evolves strongly during hydration. This paper aims to present the numerical modelling strategy adopted for a swelling pressure test on pellets mixture carried by CEA (France). Taking advantage of the finite element code LAGAMINE, the Barcelona Basic model is considered for the bentonite mechanical behaviour and the double porosity model proposed by [1] is used for the water retention behaviour and permeability evolution. Given the already-known complexity of the multiphysical and multiscale coupled processes taking place during bentonite-hydration, the obtained numerical results are in good agreement with experimental measurements. Especially, the non-monotonic evolution of the swelling pressure during the hydration phase is well captured by this model, which is always a challenge for this type of problem.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.