Issue |
E3S Web Conf.
Volume 202, 2020
The 5th International Conference on Energy, Environmental and Information System (ICENIS 2020)
|
|
---|---|---|
Article Number | 04003 | |
Number of page(s) | 8 | |
Section | Modelling and Computer Application for Environment | |
DOI | https://doi.org/10.1051/e3sconf/202020204003 | |
Published online | 10 November 2020 |
DInSAR based land deformation detection in the karst landscape of Gunung Sewu
Department of Geography, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
* Corresponding author: ridwan.arif@ui.ac.id
Hydrologic element specifically precipitation was fathomed to contribute in land deformation of karst landscape. Cempaka Tropical Cyclone (TC) had ensued in the last of 2017 in the Indian Ocean implicated to a high rate of rainfall upon the karst landscape of Gunung Sewu. This research aimed to identify the areas where sustained of land deformation due to the Cempaka TC. This research used a method of Differential Interferometry Synthetic Aperture Radar (DInSAR) by utilising a pair of Sentinel-1A satellite imageries to obtain the information of land deformation. The research result demonstrated the karst landscape of Gunung Sewu encountered land deformation after the Cempaka TC had impinged it. The land deformation occurred in the northern region of Gunung Sewu karst landscape in the forms of land uplifting with a range of 1 – 2 mm/year (115.36 km2) and gradually became a land subsidence with a range of -1 - -4 mm/year (989.25 km2) in the southern region of Gunung Sewu karst landscape. This finding was important as a preliminary research to mitigate the hazards and conserve the karst landscape of Gunung Sewu upon the threats of extreme weather in the future.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.