Issue |
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
|
|
---|---|---|
Article Number | 04003 | |
Number of page(s) | 5 | |
Section | Thermo-Hydro-Mechanical Properties of Geomaterials | |
DOI | https://doi.org/10.1051/e3sconf/202020504003 | |
Published online | 18 November 2020 |
Effect of periodic surface temperature on heat transfer in layered saturated soil
1 Graduate Research Assistant, Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA 16802 USA
2 Shaw Professor and Head, Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA 16802 USA
* Corresponding author: ckw5189@psu.edu
This paper presents numerical analyses of one-dimensional heat transfer in layered saturated soil with effective porosity and under a periodic temperature boundary condition using the numerical model HT1. The model characterizes the soil layer using separate columns to represent solid matrix and mobile pore fluid components, and a series-parallel approach to model soil thermal conductivity. Numerical simulations are presented to illustrate the effect of fluid velocity, thermal retardation factor, thermal conductivity of solid particles, effective porosity and layer heterogeneity. Numerical results indicate that increasing downward fluid velocity and decreasing retardation factor can increase the distance that temperature oscillations from the surface can propagate into the layer. In addition, decreasing fluid velocity, increasing retardation factor, and increasing thermal conductivity of solid particles can decrease the temperature oscillation amplitude in the soil. Temperature profiles also indicate the significance of soil effective porosity and multiple soil layers on heat transfer behavior.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.