Issue |
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
|
|
---|---|---|
Article Number | 04010 | |
Number of page(s) | 5 | |
Section | Thermo-Hydro-Mechanical Properties of Geomaterials | |
DOI | https://doi.org/10.1051/e3sconf/202020504010 | |
Published online | 18 November 2020 |
Thermal conductivity of Toyoura sand at various moisture and stress conditions
1 Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
2 School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), China
* Corresponding author: c.zhou@polyu.edu.hk
Thermal conductivity of soils is a crucial characteristic in various geotechnical applications, such as geothermal pumps, energy piles and buried pipelines. Previous researchers have done extensive works on the factors that may affect the soil thermal conductivity, including soil porosity, degree of saturation, mineralogy, testing temperatures, particle size and gradation. A modified oedometer frame that can incorporate the transient heat probe method is adopted to investigate the influence of stress state on thermal conductivity of Toyoura sand. Preliminary test under 1-D compression shows that the thermal conductivity of sand increases with the rise of vertical stress, and the variation exhibits hysteresis during a loading and unloading cycle. In addition, the effects of void ratio and water content were also studied and test results agreed well with previous values reported in the literature.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.