Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 04010
Number of page(s) 5
Section Thermo-Hydro-Mechanical Properties of Geomaterials
DOI https://doi.org/10.1051/e3sconf/202020504010
Published online 18 November 2020
  1. Brandl. Energy foundations and other thermo-active ground structures. Géotechnique, 56, 81 (2006). [CrossRef] [Google Scholar]
  2. S. Yun, J. C. Santamarina. Fundamental study of thermal conduction in dry soils. GRANUL MATTER, 10, 197 (2008). [Google Scholar]
  3. S. K. Haigh. Thermal conductivity of sands. Géotechnique, 62, 617 (2012). [CrossRef] [Google Scholar]
  4. Midttømme, E. Roaldset. The effect of grain size on thermal conductivity of quartz sands and silts. PETROL GEOSCI, 4, 165 (1998). [CrossRef] [Google Scholar]
  5. H. Abu-Hamdeh, R. C. Reeder. Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter. SOIL SCI SOC AM J, 64, 1285 (2000). [Google Scholar]
  6. N. H. Abuel-Naga, D. T. Bergado, A. Bouazza, M. J. Pender. Thermal conductivity of soft Bangkok clay from laboratory and field measurements. ENG GEOL, 105, 211 (2009). [Google Scholar]
  7. V. Tarnawski, T. Momose, W. Leong. Assessing the impact of quartz content on the prediction of soil thermal conductivity. Geotechnique, 59, 331 (2009). [CrossRef] [Google Scholar]
  8. S. X. Chen. Thermal conductivity of sands. HEAT MASS TRANSFER, 44, 1241 (2008). [CrossRef] [Google Scholar]
  9. A. Alrtimi, M. Rouainia, S. Haigh. Thermal conductivity of a sandy soil. APPL THERM ENG, 106, 551 (2016). [Google Scholar]
  10. J. Côté, J. M. Konrad. A generalized thermal conductivity model for soils and construction materials. CAN GEOTECH J, 42, 443 (2005). [CrossRef] [Google Scholar]
  11. W. Dai, D. Hanaor, Y. Gan. The effects of packing structure on the effective thermal conductivity of granular media: A grain scale investigation. INT J THERM SCI, 142, 266 (2019). [Google Scholar]
  12. F. Gori, S. Corasaniti. New model to evaluate the effective thermal conductivity of three-phase soils. INT COMMUN HEAT MASS, 47, 1 (2013). [CrossRef] [Google Scholar]
  13. Y. Xiao, H. Liu, B. Nan, J. S. Mccartney. Gradation-Dependent Thermal Conductivity of Sands. J GEOTECH GEOENVIRON, 144, (2018). [Google Scholar]
  14. J. Choo, Y. J. Kim, J. H. Lee, T. S. Yun, J. Lee, Y. S. Kim. Stress-induced evolution of anisotropic thermal conductivity of dry granular materials. ACTA GEOTECH, 8, 91 (2013). [Google Scholar]
  15. J. Yao, T. Wang, W. J. Likos. Measuring Thermal Conductivity of Unsaturated Sand under Different Temperatures and Stress Levels Using a Suction-Controlled Thermo-Mechanical Method. Geo-Congress 2019: Geotechnical Materials, Modeling, and Testing, 784 (2019). [Google Scholar]
  16. J. Walsh, E. Decker. Effect of pressure and saturating fluid on the thermal conductivity of compact rock. Journal of Geophysical Research, 71, 3053, (1966) [Google Scholar]
  17. A. Demırcı, K. Görgülü, Y. S. Durutürk. Thermal conductivity of rocks and its variation with uniaxial and triaxial stress. International Journal of Rock Mechanics and Mining Sciences. 41, 1133 (2004). [CrossRef] [Google Scholar]
  18. J. Yao, W. J. Likos. Transient plane and line source methods for soil thermal conductivity. GEOTECH TEST J, 40, 858 (2017). [Google Scholar]
  19. D. Zhao, X. Qian, X. Gu, S. A. Jajja, R. Yang. Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials. J ELECTRON PACKAGING, 138, (2016). [CrossRef] [Google Scholar]
  20. ASTM D5334. Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure. West Conshohocken, PA: ASTM International, (2014). [Google Scholar]
  21. V. R. Tarnawski, T. Momose, W. Leong, G. Bovesecchi, P. Coppa. Thermal conductivity of standard sands. Part I. Dry-state conditions. INT J THERMOPHYS, 30, 949 (2009). [Google Scholar]
  22. ASTM D4253. Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table. West Conshohocken, PA: ASTM International, (2006). [Google Scholar]
  23. ASTM D4254. Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density. West Conshohocken, PA: ASTM International, (2006). [Google Scholar]
  24. J. E. Low, F. A. Loveridge, W. Powrie. Thermal conductivity of soils by the needle probe method for energy foundation applications. 32nd International Thermal Conductivity Conference, (2015) [Google Scholar]
  25. V. Tarnawski, M. Mccombie, T. Momose, I. Sakaguchi, W. Leong. Thermal conductivity of standard sands. Part III. Full range of saturation. INT J THERMOPHYS, 34, 1130 (2013). [Google Scholar]
  26. Y. Nakata, Y. Kato, M. Hyodo, A. F. L. Hyde, H. Murata. One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength. SOILS FOUND, 41, 39 (2001). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.