Issue |
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
|
|
---|---|---|
Article Number | 06003 | |
Number of page(s) | 6 | |
Section | Minisymposium: Advances in Energy Geostructures Research (organized by Fleur Loveridge and Guillermo Narsilio) | |
DOI | https://doi.org/10.1051/e3sconf/202020506003 | |
Published online | 18 November 2020 |
Thermal response of energy soldier pile walls
Department of Infrastructure Engineering, The University of Melbourne, Melbourne, Australia
* Corresponding author: narsilio@unimelb.edu.au
Utilising foundation systems as heat exchangers has received significant public interest worldwide, as these energy geo-structures can constitute a clean, renewable, and economical solution for space heating and cooling. Despite their potential, the thermal performance of energy retaining walls, especially soldier pile walls, has not been sufficiently studied and understood and thus further research is required. This work utilises the first ever energy soldier pile wall in the currently under-construction Melbourne CBD North metro station as a case study. A section of this wall has been instrumented and monitored by the University of Melbourne. Full scale thermal response tests (TRTs) have been conducted on a single thermo-active soldier pile at two different excavation levels. Thermal response testing field data results are presented in terms of mean fluid temperatures and further analysed to show the potential impact of the excavation level on the structure’s thermal performance. To further explore this impact of excavation depth (or pile embedment depth) and the long-term thermal performance of energy pile walls, a detailed 3D finite element numerical model is developed in COMSOL Multiphysics and validated against the field-testing results. The simulation suggests that thermally activating all the soldier piles in the station can provide enough energy to fulfil the heating and cooling demand of the station and to satisfy partial heating demand to the surrounding buildings. Furthermore, results suggest that current energy pile design approaches may be adapted for designing energy pile walls.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.