Issue |
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
|
|
---|---|---|
Article Number | 06015 | |
Number of page(s) | 6 | |
Section | Minisymposium: Advances in Energy Geostructures Research (organized by Fleur Loveridge and Guillermo Narsilio) | |
DOI | https://doi.org/10.1051/e3sconf/202020506015 | |
Published online | 18 November 2020 |
Thermal performance of the ground in geothermal pavements
1 Department of Infrastructure Engineering, University of Melbourne, Parkville, Australia
2 Swinburne University of Technology, Melbourne, Australia
3 School of Civil Engineering and Center of Innovation in Sustainable Infrastructure Development, Suranaree University of Technology, Nakhon Ratchasima, Thailand
* Corresponding author: narsilio@unimelb.edu.au
Shallow geothermal energy utilises the ground at relatively shallow depths as a heat source or sink to efficiently heat and cool buildings. Geothermal pavement systems represent a novel concept where horizontal ground source heat pump systems (GSHP) are implemented in pavements instead of purpose-built trenches, thus reducing their capital costs. This paper presents a geothermal pavement system segment (20m × 10m) constructed and monitored in the city of Adelaide, Australia, as well as thermal response testing (TRT) results. Pipes have been installed in the pavement at 0.5 m depth, and several thermistors have been placed on the pipes and in the ground. A TRT has been performed with 6kW heating load to achieve an understanding of the thermal response of the system as well as to estimate the effective thermal conductivity of the ground. The results show that the conventional semi-log method may be applicable to determine the thermal conductivity for geothermal pavements. The geothermal heat exchanger at shallow depth is considerably under the influence of the ambient temperature; however, it is still acceptable for exchanging the heat within the ground. It is also concluded that the impact radius of heat exchanger in geothermal pavement during the TRT is around 0.5m in the vertical and horizontal directions for this case study.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.