Issue |
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
|
|
---|---|---|
Article Number | 07006 | |
Number of page(s) | 7 | |
Section | Minisymposium: Geothermal Use of Built Urban Infrastructures and the Shallow Subsurface for Energy Storage and Production (organized by Frank Wuttke, Thomas Nagel, Sebastian Bauer and David Smeulders) | |
DOI | https://doi.org/10.1051/e3sconf/202020507006 | |
Published online | 18 November 2020 |
Externally heated geothermal bridge deck: Performance analysis of the U-tube ground heat exchanger
1 Department of Civil Engineering, the University of Texas at Arlington, TX 76019, United States
2 Zachry Department of Civil and Environmental Engineering, Texas A&M University, TX 77843, United States
* Corresponding author: xinbao@uta.edu
In recent years, the geothermal heat pump de-icing system (GHDS) is introduced as a sustainable solution for bridge deck de-icing, which utilizes renewable geothermal energy. Existing GHDS designs mostly rely upon hydronic loops embedded in concrete decks. To extend the GHDS for existing bridges, a new external hydronic deck has been developed recently, which employs a hydronic pipe being attached to the bottom surface of the bridge deck. In this study, the performance of the externally heated geothermal bridge deck is investigated through winter deicing and summer recharging tests with the focus on the ground loop heat exchanger (GLHE), a key component of the GHDS. The test results show that the de-icing system was successful in maintaining the deck surface temperature above freezing in all winter tests. The soil temperature measurements indicate, the 132.5 m vertical U-tube ground heat exchanger is benefited from the undisturbed soil temperature of around 21 °C. The overall average hourly heat extraction of 0.67 kW during winter operation and average hourly heat injection of 0.69 kW during the summer operation were observed. Also, the ground thermal recharge test showed the increase of undisturbed soil temperature at 1.5 m from the geothermal borehole by 0.36 °C after 50 days of system operation.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.