Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 07006
Number of page(s) 7
Section Minisymposium: Geothermal Use of Built Urban Infrastructures and the Shallow Subsurface for Energy Storage and Production (organized by Frank Wuttke, Thomas Nagel, Sebastian Bauer and David Smeulders)
DOI https://doi.org/10.1051/e3sconf/202020507006
Published online 18 November 2020
  1. R. Baboian, “Synergistic Effects of Acid Deposition and Road Salts on Corrosion,” in Corrosion Forms and Control for Infrastructure, V. Chaker, ed. (ASTM International, 1992), pp. 17–29. [CrossRef] [Google Scholar]
  2. M. Yunovich, N. Thompson, and Y. P. Virmani, “Life cycle cost analysis for reinforced concrete bridge decks,” in CORROSION 2003 (NACE International, 2003). [Google Scholar]
  3. M. Fischel, Evaluation of Selected Deicers Based on a Review of the Literature. The SeaCrest Group. Louisville, CO (Report Number CDOT-DTD, 2001). [Google Scholar]
  4. O. Habibzadeh-Bigdarvish, X. Yu, G. Lei, T. Li, and A. J. Puppala, “Life-Cycle cost-benefit analysis of Bridge deck de-icing using geothermal heat pump system: A case study of North Texas,” Sustain. Cities Soc. 47, 101492 (2019). [Google Scholar]
  5. M. Mahedi, S. Satvati, B. Cetin, and J. L. Daniels, “Chemically Induced Water Repellency and the Freeze–Thaw Durability of Soils,” J. Cold Reg. Eng. 34(3), 4020017 (2020). [CrossRef] [Google Scholar]
  6. L. D. Minsk, Heated Bridge Technology-Report on ISTEA Sec. 6005 Program (United States. Federal Highway Administration, 1999). [Google Scholar]
  7. J. W. Lund, “Reconstruction of a pavement geothermal deicing system,” Geo-Heat Cent. (1999). [Google Scholar]
  8. A. Binod, S. Kenichi, J. Peter, and L. Laloui, “Thermo-mechanical behaviour of energy piles,” Geotechnique-London- 62(ARTICLE), 503–519 (2012). [Google Scholar]
  9. G. Zhang, C. Xia, M. Sun, Y. Zou, and S. Xiao, “A new model and analytical solution for the heat conduction of tunnel lining ground heat exchangers,” Cold Reg. Sci. Technol. 88, 59–66 (2013). [Google Scholar]
  10. Y. Nam and H.-B. Chae, “Numerical simulation for the optimum design of ground source heat pump system using building foundation as horizontal heat exchanger,” Energy 73, 933–942 (2014). [CrossRef] [Google Scholar]
  11. D. Sterpi, A. Angelotti, O. Habibzadeh Bigdarvish, and D. Jalili, “Heat transfer process in a thermo-active diaphragm wall from monitoring data and numerical modelling,” in 9th European Conference on Numerical Methods in Geotechnical Engineering (Taylor and Francis Group, 2018), 1, pp. 731–736. [CrossRef] [Google Scholar]
  12. O. Ghasemi-Fare, G. A. Bowers, C. A. Kramer, T. Y. Ozudogru, P. Basu, C. G. Olgun, T. Bulbul, and M. Sutman, A Feasibility Study of Bridge Deck Deicing Using Geothermal Energy (Mid-Atlantic Universities Transportation Center, 2015). [Google Scholar]
  13. X. Liu, S. J. Rees, and J. D. Spitler, “Modeling snow melting on heated pavement surfaces. Part I: Model development,” Appl. Therm. Eng. 27(5–6), 1115– 1124 (2007). [Google Scholar]
  14. X. Liu, S. J. Rees, and J. D. Spitler, “Modeling snow melting on heated pavement surfaces. Part II: Experimental validation,” Appl. Therm. Eng. 27(5– 6), 1125–1131 (2007). [Google Scholar]
  15. X. Yu, A. J. Puppala, and N. Zhang, Use of Geothermal Energy for Deicing Approach Pavement Slabs and Bridge Decks, Phase 1 (Texas. Dept. of Transportation. Research and Technology Implementation Office, 2017). [Google Scholar]
  16. X. Yu, M. T. Hurley, T. Li, G. Lei, A. Pedarla, and A. J. Puppala, “Experimental Feasibility Study of A New Attached Hydronic Loop Design for Geothermal Heating of Bridge Decks,” Appl. Therm. Eng. 114507 (2019). [Google Scholar]
  17. T. Li, G. Lei, X. Yu, N. Zhang, and A. J. Puppala, “Numerical feasibility study of an externally heated geothermal bridge deck,” in IFCEE 2018 (2018), pp. 758–767. [Google Scholar]
  18. T. Li, X. Yu, G. Lei, O. Habibzadeh-Bigdarvish, and M. Hurley, “Numerical Analyses of a Laboratory Test of a Geothermal Bridge Deck Externally Heated Under Controlled Temperature,” Appl. Therm. Eng. 115255 (2020). [Google Scholar]
  19. A. Balbay and M. Esen, “Experimental investigation of using ground source heat pump system for snow melting on pavements and bridge decks,” Sci. Res. Essays 5(24), 3955–3966 (2010). [Google Scholar]
  20. F. Tang and H. Nowamooz, “Factors influencing the performance of shallow Borehole Heat Exchanger,” Energy Convers. Manag. 181, 571–583 (2019). [Google Scholar]
  21. J. Liu, F. Wang, W. Cai, Z. Wang, and C. Li, “Numerical investigation on the effects of geological parameters and layered subsurface on the thermal performance of medium-deep borehole heat exchanger,” Renew. Energy 149, 384–399 (2020). [Google Scholar]
  22. E. D. Kerme and A. S. Fung, “Heat transfer simulation, analysis and performance study of single U-tube borehole heat exchanger,” Renew. energy 145, 1430–1448 (2020). [Google Scholar]
  23. Climate data of DFW international airport, Texas, U.S. (2019). https://www.usclimatedata.com/climate/dallas-dfw-intl-arpt/texas/united-states/ustx0328/2018/2. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.