Issue |
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
|
|
---|---|---|
Article Number | 08007 | |
Number of page(s) | 7 | |
Section | Minisymposium: Solid-Fluid Interactions in Emerging Energy Geo-Systems (organized by Shahrzad Roshankhah and Seunghee Kim) | |
DOI | https://doi.org/10.1051/e3sconf/202020508007 | |
Published online | 18 November 2020 |
Evolution of poroviscoelastic properties of silica-rich rock after CO2 injection
Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
* Corresponding author: romanmax@illinois.edu
Injection of CO2 into the subsurface requires consideration of the poromechanical behavior of reservoir rock saturated with aqueous fluid. The material response is usually assumed to be elastic, to avoid consideration of induced seismicity, or viscoelastic, if long-term deformations are needed to be taken into the account. Both elastic and viscous behavior may be influenced by the chemical reactions that are caused by the acidic mixture formed as high-pressure CO2 enters the pore space saturated with aqueous fluid. In this study, we conduct laboratory experiments on a fluid-saturated porous rock - Berea sandstone, and evaluate its poromechanical properties. Subsequently, the specimens are treated with liquid CO2 for 21 days and the corresponding variations in their properties are determined. The constitutive model considering the elastic time-dependent behavior of porous rock is validated by comparing the measured and predicted specimen deformation. Presented data indicate that the effect of CO2 injection on the long-term response is more significant compared to the short-term response. It is suggested for the constitutive models that predict long-term reservoir behavior during CO2 storage to include not only the poroelastic response and its change due to treatment, but also the time-dependent deformation and its evolution caused by the changes in chemistry of the pore fluid.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.