Issue |
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
|
|
---|---|---|
Article Number | 08008 | |
Number of page(s) | 4 | |
Section | Minisymposium: Solid-Fluid Interactions in Emerging Energy Geo-Systems (organized by Shahrzad Roshankhah and Seunghee Kim) | |
DOI | https://doi.org/10.1051/e3sconf/202020508008 | |
Published online | 18 November 2020 |
An experimental study of the effect of motile bacteria on the fluid displacement in porous media
Geosystem Engineering, Georgia Institute of Technology, United States
* Corresponding author: sheng.dai@ce.gatech.edu
Multiphase flow patterns in porous media largely depend on the properties of the fluids and interfaces such as viscosity, surface tension, and contact angle. Microorganisms in soils change the fluid and interfacial properties, and thus can alter multiphase fluid flow in porous media. This study investigates the impact of motile bacterium Escherichia coli (E. coli) on fluid displacement patterns in a microfluidic chip. The fluid displacement is observed during the saturation and the desaturation processes of the microfluidic chip with and without E.coli suspension. Time-lapse photography results show that the presence of E.coli alters the displacement patterns during the wetting and drying process and changes the residual saturation of the chip. Although studies of the impacts of motility on interfacial properties remain elusive, these results bring the expectation to the manipulation of multiphase transport in porous media and the adaptive control of industrial and environmental flow processes using active particles.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.