Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 08007
Number of page(s) 7
Section Minisymposium: Solid-Fluid Interactions in Emerging Energy Geo-Systems (organized by Shahrzad Roshankhah and Seunghee Kim)
DOI https://doi.org/10.1051/e3sconf/202020508007
Published online 18 November 2020
  1. J. Rutqvist, The geomechanics of CO2 storage in deep sedimentary formations, Geotech. Geol. Eng. 30 (2012) [CrossRef] [Google Scholar]
  2. D.C. Thomas, S.M. Benson, Carbon Dioxide Capture for Storage in Deep Geologic Formations (Elsevier, Oxford, 2004) [Google Scholar]
  3. Y. Le Guen, F. Renard, R. Hellmann, E. Brosse, M. Collombet, D. Tisserand, J.-P. Gratier, Enhanced deformation of limestone and sandstone in the presence of high PCO2 fluids, J. Geophys. Res. 112 (2007) [Google Scholar]
  4. W.R. Wawersik, J.W. Rudnicki, P. Dove, J. Harris, J.M. Logan, L. Pyrak-Nolte, M. Orr Jr, P.J. Ortoleva, F. Richter, N.R. Warpinski, J.L. Wilson, T-F. Wong, Terrestrial sequestration of CO2: An assessment of research needs, Adv. Geophys. 43 (2001) [CrossRef] [Google Scholar]
  5. V.M. Yarushina, Y.Y. Podladchikov, (De) compaction of porous viscoelastoplastic media: model formulation, J. Geophys. Res. Sol. Earth 120 (2015) [Google Scholar]
  6. R.Y. Makhnenko, Y.Y. Podladchikov, Experimental poroviscoelasticity of common sedimentary rocks, J. Geophys. Res. Sol. Earth 123 (2018) [Google Scholar]
  7. M.A. Biot, General theory of three-dimensional consolidation, J. Appl. Phys. 12 (1941) [Google Scholar]
  8. M.A. Biot, Theory of deformation of a porous viscoelastic anisotropic solid. J. Appl. Phys 27 (1956) [Google Scholar]
  9. Y. Abousleiman, A. H.-D. Cheng, C. Jiang, J.-C. Roegiers, A micromechanically consistent poroviscoelasticity theory for rock mechanics applications. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30 (1993) [CrossRef] [Google Scholar]
  10. J. Rohmer, A. Pluymakers, F. Renard, Mechano-chemical interactions in sedimentary rocks in the context of CO2 storage: weak acid, weak effects?, Earth-Sci. Rev. 157 (2016) [CrossRef] [Google Scholar]
  11. V. Vilarrasa, R.Y. Makhnenko, J. Rutqvist, Field and laboratory studies of geomechanical response to the injection of CO2, In: Science of Carbon Storage in Deep Saline Formations: Process Coupling Across Time and Spatial Scales (Elsevier, Amsterdam, 2009) [Google Scholar]
  12. I.O. Ojala, The effect of CO2 on the mechanical properties of reservoir and cap rock, Energy Proc. 4 (2011) [CrossRef] [Google Scholar]
  13. S. Hangx, A. van der Linden, F. Marcelis, A. Bauer, The effect of CO2 on the mechanical properties of the Captain sandstone: geological storage of CO2 at the Goldeneye field (UK), Int. J. Greenhouse Gas Control 19 (2013) [CrossRef] [Google Scholar]
  14. B. Metz, O. Davidson, H. de Coninck, M. Loos, L. Meyer, IPCC Special Report on Carbon Dioxide Capture and Storage (Cambridge University Press, Cambridge, 2005) [Google Scholar]
  15. J.R. Rice, M.P. Cleary, Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Rev. Geophys. Space. Phys. 14 (1976) [Google Scholar]
  16. A. Skempton, The pore-pressure coefficients A and B, Géotechnique 4 (1954) [Google Scholar]
  17. R.Y. Makhnenko, J.F. Labuz, Elastic and inelastic deformation of fluid-saturated rock, Phil. Trans. R. Soc. A. 374 (2016) [CrossRef] [Google Scholar]
  18. A. Tarokh, R.Y. Makhnenko, K. Kim, X. Zhu, J. Popovics, B. Segvic, D. Sweet, Influence of CO2 injection on the poromechanical response of Berea sandstone, Int. J. Greenhouse Gas Control 95 (2020) [CrossRef] [Google Scholar]
  19. R.Y. Makhnenko, J.F. Labuz, Dilatant hardening of fluid-saturated sandstone, J. Geophys. Res. Sol. Earth 120 (2015) [Google Scholar]
  20. V. Vilarrasa, R.Y. Makhnenko, Hydromechanical aspects of CO2 breakthrough into clay-rich caprock, Energ. Proc. 125 (2017) [CrossRef] [Google Scholar]
  21. L. Biolzi, J.F. Labuz, G. Muciaccia, A problem of scaling in fracture of damaged rock, Int. J. Rock. Mech. Min. Sci. 48 (2011) [CrossRef] [Google Scholar]
  22. K. Kim, V. Vilarrasa, R.Y. Makhnenko, CO2 injection effect on geomechanical and flow properties of calcite-rich reservoirs, Fluids 3 (2018) [Google Scholar]
  23. A.W. Bishop, The influence of system compressibility on the observed pore-pressure response to an undrained change in stress in saturated rock, Géotechnique 12 (1976) [Google Scholar]
  24. A. Tarokh, R.Y. Makhnenko, Remarks on the solid and bulk responses of fluid-filled porous rock, Geophysics 84 (2019) [CrossRef] [Google Scholar]
  25. Z. Shi, L. Sun, I. Haljasmaa, W. Harbert, S. Sanguinito, M. Tkach, A. Goodman, T.T. Tsotsis, K. Jessen, Impact of Brine/CO2 exposure on the transport and mechanical properties of the Mt Simon sandstone, J. Petro. Sci. Eng. 177 (2019) [Google Scholar]
  26. Y. Oikawa, T. Takehara, T. Tosha, Effect of CO2 injection on mechanical properties of Berea sandstone, Proceedings of 42nd US Rock Mechanics Symposium and 2nd US-Canada Rock Mechanics Symposium, San Francisco, CA (2008) [Google Scholar]
  27. N. Brantut, M.J. Heap, P.G. Meredith, P. Baud, Time-dependent cracking and brittle creep in crustal rocks: A review, J. Struct. Geol. 52 (2013) [Google Scholar]
  28. Y. Bernabe, D.T. Fryer, R.M. Shively, Experimental observations of the elastic and inelastic behavior of porous sandstones, Geophys. J. Int. 117 (1994) [Google Scholar]
  29. A. Putnis, Mineral replacement reactions, Rev. Mineral. Geochem. 70 (2009) [Google Scholar]
  30. S. Omlin, B. Malvoisin, Y.Y. Podladchikov, Pore fluid extraction by reactive solitary waves in 3-D, Geophys. Res. Lett., 44 (2017) [Google Scholar]
  31. R.A. Bauer, R. Will, S. Greenberg, S.G. Whittaker, Illinois Basin-Decatur project. In: Geophysics and Geosequestration (Cambridge University Press, Cambridge, 2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.