Issue |
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
|
|
---|---|---|
Article Number | 12003 | |
Number of page(s) | 7 | |
Section | Minisymposium: Low Carbon Geotechnical Engineering (organized by Alessandro Tarantino, Enrique Romero, and Alessio Ferrari) | |
DOI | https://doi.org/10.1051/e3sconf/202020512003 | |
Published online | 18 November 2020 |
Castanea sativa Mill. plantations as a low-carbon landslide hazard mitigation measure
1 AMAP, INRAE, University of Montpellier, IRD, CNRS, CIRAD, 34000 Montpellier, France
2 DICEA, University of Naples Federico II, Via Claudio 21, 80125 Napoli Italy
3 Department of Engineering, Durham University, Lower Mountjoy, DH1 3LE, Durham, UK
* Corresponding author: ana.s.dias@durham.ac.uk
In the last twenty years, several rainfall-induced landslides occurred in areas surrounding Mount Vesuvius (Campania, Italy). Landslides usually involve the shallow pyroclastic soil layers (2-3 m thick) covering the steep slopes of the Lattari Mountains. The cultivation of trees for fruit production on the pyroclastic cover is a common practice by local farmers. Woody vegetation contributes to slope stability through the mechanical reinforcement of soil by roots. We investigated the use of Sweet chestnut (Castanea sativa Mill.) trees as a low-carbon landslide mitigation measure to be applied in large areas where conventional geotechnical engineering solutions would be costly and extremely invasive, in order to respond to the demand in energy and environmental geotechnics for eco-friendly approaches. The root distribution of C. sativa in terms of root volume ratio was determined from soil cores. The mechanical reinforcement of soil by tree roots was quantified based on root-soil interaction models. Slope stability was analysed by means of limit equilibrium analyses performed on an infinite slope. The safety factor calculated for a cultivated slope was higher than for a fallow slope due to the mechanical reinforcement provided by roots. Therefore, the cultivation of C. sativa is a useful mitigation measure against shallow landslides.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.