Issue |
E3S Web Conf.
Volume 236, 2021
3rd International Conference on Energy Resources and Sustainable Development (ICERSD 2020)
|
|
---|---|---|
Article Number | 02006 | |
Number of page(s) | 5 | |
Section | New Energy Technology and Clean Energy Production and Transformation | |
DOI | https://doi.org/10.1051/e3sconf/202123602006 | |
Published online | 09 February 2021 |
A Bearing Life Prediction Method of Improving Smooth Degree and the Background Value
1 Air and Missile Defense College, Air Force Engineering University, Xi’an shan xi 710051, China
2 Mathematics and Information Science College, Shaanxi Normal University, Xi’an shan xi 710051, China
* Corresponding author:zyc412181588@ahlctl.com
Bearings, as a component in many complex weapons, can be used to reduce friction to improve the efficiency of equipment. Bearing CV value can quantify the working performance of bearings, which can act as a reference standard for staff to evaluate the working condition of bearings. According to the known data, the real CV value of the bearing is calculated in this paper. In order to improve the smoothing ratio, the data is processed by the idea of data transformation and the background value is optimized by the new formula. The two improve the GM (1,1) model and simulate the predicted bearing CV and calculate the moment of failure by this model, which is compared with the traditional GM (1,1) and the improved GM (1,1) by cumulative method in terms of error and accuracy. It is verified that the average relative error and the model prediction accuracy of the model prediction life are 0.0185 and 98.15% respectively after the improvement of the stability and background value. Therefore, this method has certain practical value in engineering, and is more effective than the cumulative GM (1,1) model.
© The Authors, published by EDP Sciences 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.