Issue |
E3S Web Conf.
Volume 258, 2021
Ural Environmental Science Forum “Sustainable Development of Industrial Region” (UESF-2021)
|
|
---|---|---|
Article Number | 08022 | |
Number of page(s) | 8 | |
Section | Environmental Protection and Pollution Control | |
DOI | https://doi.org/10.1051/e3sconf/202125808022 | |
Published online | 20 May 2021 |
Development of a mathematical model of dynamic characteristics of a drive with a planetary mechanism
1 Tashkent State Technical University named after Islam Karimov, 2, Universitetskaya Str., 100174, Tashkent, Uzbekistan
2 Olmalik branch of Tashkent State Technical University named after Islam Karimov, M. Ulugbek Str., 110100, Olmalik, Uzbekistan
* Correspondind author: mukhiddinkhudjaev@gmail.com
The article is devoted to the development of a mathematical model of dynamic characteristics of a drive with a planetary gear mechanism. The subject of research is a drive with a planetary gear mechanism. The following issues were considered in the article: the synthesis of a planetary gear mechanism; the development of a mathematical model that describes the dynamic characteristics of the system; the determination of the dynamic characteristics of a drive with a planetary gear mechanism. Research is based on the method of determining the number of gear teeth; the method of determining the kinetic energy of the James gearbox; the method of determining the dynamic characteristics of an electric motor. The possible number of satellites is given in the article; the pitch radii of the wheels for a given modulus are defined; the moment of inertia of the mechanism reduced to the movable central wheel is determined; a mathematical model of the motion of a drive with a planetary gear mechanism is developed. Equations of motion of a drive with a planetary gear mechanism were obtained. Assuming, in a particular case, all the links of the drive with the planetary gear mechanism as rigid links, a mathematical model was developed for this system, considering the dynamic characteristics of an electric motor. A mathematical model was developed that describes the dynamic characteristics of the system. Analytical solutions for the developed mathematical model are given.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.