Issue |
E3S Web Conf.
Volume 334, 2022
EFC21 - European Fuel Cells and Hydrogen Piero Lunghi Conference
|
|
---|---|---|
Article Number | 04014 | |
Number of page(s) | 3 | |
Section | Fuel Cell Technologies | |
DOI | https://doi.org/10.1051/e3sconf/202233404014 | |
Published online | 10 January 2022 |
Effects of (Li-Na)2CO3 on The Electrical Properties of Calcia-Stabilized Zirconia/Carbonate Composite Electrolytes
Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia.
* Corresponding author: hardev@che.itb.ac.id
Calcia-Stabilized Zirconia (CSZ) is potential as low-cost electrolytes material for Solid oxide fuel cell (SOFC). It is fluorite structure widely known as oxygen ion conductors. Addition of carbonate salt into fluorite-based electrolyte is common to overcome low conductivity of CSZ as well as to decrease sintering temperature. Increase of ionic conductivity in the SOFC electrolyte is also influenced by presence of protons (H+), so it is called mixed-ion electrolytes. In this study, the effect of sintering temperature and carbonate content prepared from mixture of Li2CO3 and Na2CO3 on the relative density, ionic conductivity and microstructure of electrolyte and fuel cell performance was investigated. The sintered CSZ/carbonate samples were examined physically and electrochemically by using SEM, TEM, XRD, and EIS. The unique detail of nanostructure for CSZ/carbonate was investigated by TEM. The XRD is to observed peak associating with CSZ, Li2CO3, and Na2CO3, as well as its crystallinity. Moreover, the electrolyte resistance was measured by EIS so that the proton conductivity and oxygen conductivity of CSZ/carbonate can be calculated. The improvement of low-cost electrolyte material such as CSZ can be realized by providing protons pathway.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.